
Linux Programming Unit-I

1

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

UNIT-I

Syllabus

Linux Utilities-File handling utilities, Security by file permissions, Process utilities, Disk utilities,

Networking commands, Filters, Text processing utilities and Backup utilities, sed – scripts,

operation, addresses, commands, applications, awk – execution, fields and records, scripts,

operation, patterns, actions, functions, using system commands in awk.(

http://www.grymoire.com/Unix/Awk.html)

Working with the Bourne again shell(bash): Introduction, shell responsibilities, pipes and input

Redirection, output redirection, here documents, running a shell script, the shell as a programming

language, shell meta characters, file name substitution, shell variables, command substitution, shell

commands, the environment, quoting, test command, control structures, arithmetic in shell, shell

script examples, interrupt processing, functions, debugging shell scripts.

History of UNIX:

In 1969-1970, Kenneth Thompson, Dennis Ritchie, and others at AT&T Bell Labs began

developing a small operating system on a little-used PDP-7. The operating system was soon

christened Unix, a pun on an earlier operating system project called MULTICS. In 1972-1973 the

system was rewritten in the programming language C, an unusual step that was visionary: due to

this decision, Unix was the first widely-used

operating system that could switch from and outlive its

original hardware. Other innovations were added to Unix as

well, in part due to synergies between Bell Labs and the

academic community. In 1979, the ``seventh edition'' (V7)

version of Unix was released, the grandfather of all extant

Unix systems.

History of Linux:

In 1991 Linus Torvalds began developing an operating system

kernel, which he named ``Linux'' [Torvalds 1999]. This kernel could

be combined with the FSF material and other components (in

particular some of the BSD components and MIT's X-windows

software) to produce a freely-modifiable and very useful operating

system. This book will term the kernel itself the ``Linux kernel'' and

an entire combination as ``Linux''. Note that many use the term

``GNU/Linux'' instead for this combination.

http://www.grymoire.com/Unix/Awk.html)

Linux Programming Unit-I

2

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Comparing Linux and UNIX

Originally, the term ``Unix'' meant a particular product developed by AT&T. Today, the Open

Group owns the Unix trademark, and it defines Unix as ``the worldwide Single UNIX

Specification''.Linux is not derived from Unix source code, but its interfaces are intentionally like

Unix. Therefore, Unix lessons learned generally apply to both, including information on security.

Most of the information in this book applies to any Unix-like system. Linux-specific information

has been intentionally added to enable those using Linux to take advantage of Linux's capabilities.

Unix-like systems share a number of security mechanisms, though there are subtle differences and

not all systems have all mechanisms available. All include user and group ids (uids and gids) for

each process and a file system with read, write, and execute permissions (for user, group, and

other). See Thompson [1974] and Bach [1986] for general information on Unix systems, including

their basic security mechanisms.

Features of Linux:

Portable – Portability means software’s can works on different types of hardware’s in same way.

Linux kernel and application programs supports their installation on any kind of hardware platform.

Open Source – Linux source code is freely available and it is community based development

project. Multiple teams works in collaboration to enhance the capability of Linux operating system

and it is continuously evolving.

Multi-User – Linux is a multiuser system means multiple users can access system resources like

memory/ ram/ application programs at same time.

Multiprogramming – Linux is a multiprogramming system means multiple applications can run

at same time.

Hierarchical File System – Linux provides a standard file structure in which system files/ user

files are arranged.

Shell – Linux provides a special interpreter program which can be used to execute commands of

the operating system. It can be used to do various types of operations, call application programs

etc.

Security – Linux provides user security using authentication features like password protection/

controlled access to specific files/ encryption of data.

Help facility– use man utility to take complete description of any utility which means provides

help facility to all commands as various manuals.

Faculty tolerance – automatically reset the failure of Hardware

Linux Programming Unit-I

3

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Communication- Provides various interprocess communication utilities and system calls for

sending and receiving data among the process created by users.

Virtual memory- using paging (not swapping whole processes) to disk: to a separate partition or

a file in the file system, or both, with the possibility of adding more swapping areas during runtime

Architecture of UNIX

Architecture. Hardware layer - Hardware consists of all peripheral devices (RAM/ HDD/ CPU

etc). Kernel - Core component of Operating System, interacts directly with hardware, provides

low level services to upper layer components. Shell - An interface to kernel, hiding complexity of

kernel's functions from users.

Kernel is also called as the heart of the Operating System and the Every Operation is performed

by using the Kernel , When the Kernel Receives the Request from the Shell then this will Process

the Request and Display the Results on the Screen. The various Types of Operations those are

Performed by the Kernel are as followings:-

1) It Controls the State the Process Means it checks whether the Process is running or Process is

Waiting for the Request of the user.

2) Provides the Memory for the Processes those are Running on the System Means Kernel Runs

the Allocation and De-allocation Process , First When we Request for the service then the Kernel

Linux Programming Unit-I

4

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

will Provides the Memory to the Process and after that he also Release the Memory which is

Given to a Process.

3) The Kernel also Maintains a Time table for all the Processes those are Running Means the

Kernel also Prepare the Schedule Time means this will Provide the Time to various Process of the

CPU and the Kernel also Puts the Waiting and Suspended Jobs into the different Memory Area.

4) When a Kernel determines that the Logical Memory doesn’t fit to Store the Programs. Then he

uses the Concept of the Physical Memory which Will Stores the Programs into Temporary Manner.

Means the Physical Memory of the System can be used as Temporary Memory.

5) Kernel also maintains all the files those are Stored into the Computer System and the Kernel

Also Stores all the Files into the System as no one can read or Write the Files without any

Permissions. So that the Kernel System also Provides us the Facility to use the Passwords and also

all the Files are Stored into the Particular Manner.

SHELL:

The shell acts as an interface between the user and the kernel. When a user logs in, the login

program checks the username and password, and then starts another program called the shell.

The shell is a command line interpreter (CLI). It interprets the commands the user types in and

arranges for them to be carried out.

Types of Different Shells

Name of
shell

Command
name

Description

C Shell csh Similar to the C programming language in syntax

Bash

Shell

bash
Bourne Again Shell combines the advantages of the

Korn Shell and the C Shell. The default on most
Linux distributions.

tcsh tcsh Similar to the C Shell

 Shell script is a program written in a shell programming language (e.g., bash, csh, ksh or sh)

that allows users to issue a single command to execute any combination of commands, including

those with options and/or arguments, together with redirection. Shell scripts are well suited for

automating simple tasks and creating custom-made filters.

Shell Responsibilities:

 Command line interpreter

 Program Execution

 Meta characters

 Variable and Filename Substitution

http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://www.linfo.org/option.html
http://www.linfo.org/argument.html
http://www.linfo.org/redirection.html
http://www.linfo.org/filters.html

Linux Programming Unit-I

5

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

 I/O Redirection

 Pipeline Hookup

 Environment Control

 Interpreted Programming Language

Command or Utility:

A shell is a program that reads commands that are typed on a keyboard and then executes (i.e.,

runs) them. Shells are the most basic method for a user to interact with the system. Every Unix-

like operating system has at least one shell, and most have several. The default shell on most Linux

systems is bash.

A command is an instruction given by a user telling a computer to do something, such a run a

single program or a group of linked programs. Commands are generally issued by typing them in

at the command line (i.e., the all-text display mode) and then pressing the ENTER key, which

passes them to the shell.

Types of Utilities:

i) Basic Commads: echo,cal,date,man,pwd,man,who,whoami,bc

ii)File handling Utilities: ls,cat,rm,more,mv,cd,cp,touch,wc

iii) Security related utilities: chmod,chown,

iv) Process Utilities: ps,kill,bg,ipcs

v) Disk Utilities: du,df

vi) Networking commands: finger,arp,telnet,rlogin,ftp,chfn

vii) Filtering commands: head,tail,grep,find,sort,cp,uniq,tr,tee

viii) Text processing commands: cut,paste,join,

ix) Comparison commands: diff,cmp,comp

x) Backup commands: tar,zip,gzip,unzip,gunzip,cpio

xi) Link commands: ln, ln-s,unlink

i) Basic Commands: echo, cal, date, man, pwd, man, who, whoami,

bc
NAME
echo - display a line of text

SYNOPSIS

echo [OPTION]... [STRING]...

DESCRIPTION

Echo the STRING(s) to standard output.

http://www.linfo.org/computer.html
http://www.linfo.org/program.html
http://www.linfo.org/command_line.html
http://www.linfo.org/shell.html

Linux Programming Unit-I

6

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Tag Description

-n do not output the trailing newline

-e enable interpretation of backslash escapes

-E disable interpretation of backslash escapes (default)

ii) File handling Utilities: ls,cat,rm,more,mv,cd,cp,touch,wc

Listing Files

To list the files and directories stored in the current directory. Use the following command −

Here is the sample output of the above command −

The command ls supports the -l option which would help you to get more information about the

listed files −

$ cal

April 2016

Su Mo Tu We Th Fr Sa

1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

$ls

$ls

bin hosts lib res.03

ch07 hw1 pub test_results

ch07.bak hw2 res.01 users

docs hw3 res.02 work

Linux Programming Unit-I

7

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Here is the information about all the listed columns −

 First Column: represents file type and permission given on the file. Below is the description

of all type of files.

 Second Column: represents the number of memory blocks taken by the file or directory.

 Third Column: represents owner of the file. This is the Unix user who created this file.

 Fourth Column: represents group of the owner. Every Unix user would have an associated

group.

 Fifth Column: represents file size in bytes.

 Sixth Column: represents date and time when this file was created or modified last time.

 Seventh Column: represents file or directory name.

In the ls -l listing example, every file line began with a d, -, or l. These characters indicate the

type of file that's listed.

Prefix Description

- Regular file, such as an ASCII text file, binary executable, or hard link.

$ls -l

total 1962188

drwxrwxr-x 2 amrood amrood 4096 Dec 25 09:59 uml

-rw-rw-r-- 1 amrood amrood 5341 Dec 25 08:38 uml.jpg

drwxr-xr-x 2 amrood amrood 4096 Feb 15 2006 univ

drwxr-xr-x 2 root root 4096 Dec 9 2007 urlspedia

drwxr-xr-x 11 amrood amrood 4096 May 29 2007 zlib-1.2.3

Linux Programming Unit-I

8

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

b Block special file. Block input/output device file such as a physical hard drive.

c Character special file. Raw input/output device file such as a physical hard drive

d Directory file that contains a listing of other files and directories.

l Symbolic link file. Links on any regular file.

p Named pipe. A mechanism for interprocess communications

s Socket used for interprocess communication.

Meta Characters

Meta characters have special meaning in Unix. For example * and ? are metacharacters. We

use * to match 0 or more characters, a question mark ?matches with single character.

For Example −

Displays all the files whose name start with ch and ends with .doc −

Here * works as meta character which matches with any character. If you want to display all the

files ending with just .doc then you can use following command −

$ls ch*.doc

ch01-1.doc ch010.doc ch02.doc ch03-2.doc

ch04-1.doc ch040.doc ch05.doc ch06-2.doc

ch01-2.doc ch02-1.doc c

$ls *.doc

Linux Programming Unit-I

9

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Hidden Files

An invisible file is one whose first character is the dot or period character (.). UNIX programs

(including the shell) use most of these files to store configuration information.

Some common examples of hidden files include the files −

 .profile − the Bourne shell (sh) initialization script

 .kshrc − the Korn shell (ksh) initialization script

 .cshrc − the C shell (csh) initialization script

 .rhosts − the remote shell configuration file

To list invisible files, specify the -a option to ls −

 Single dot . − This represents current directory.

 Double dot .. − This represents parent directory.

Creating Files

You can use vi editor to create ordinary files on any Unix system. You simply need to give

following command −

$ ls -a

. .profile docs lib test_results

.. .rhosts hosts pub users

.emacs bin hw1 res.01 work

.exrc ch07 hw2 res.02

.kshrc ch07.bak hw3 res.03

$

$ vi filename

Linux Programming Unit-I

10

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Above command would open a file with the given filename. You would need to press key i to

come into edit mode. Once you are in edit mode you can start writing your content in the file as

below −

Once you are done, do the following steps −

 Press key esc to come out of edit mode.

 Press two keys Shift + ZZ together to come out of the file completely.

Now you would have a file created with filename in the current directory.

Editing Files

You can edit an existing file using vi editor. We would cover this in detail in a separate tutorial.

But in short, you can open existing file as follows −

Once file is opened, you can come in edit mode by pressing key i and then you can edit file as

you like. If you want to move here and there inside a file then first you need to come out of edit

mode by pressing key esc and then you can use following keys to move inside a file −

 l key to move to the right side.

 h key to move to the left side.

 k key to move up side in the file.

 j key to move down side in the file.

This is unix file....I created it for the first time.....

I'm going to save this content in this file.

$ vi filename

$

$ vi filename

Linux Programming Unit-I

11

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

So using above keys you can position your cursor where ever you want to edit. Once you are

positioned then you can use i key to come in edit mode. Edit the file, once you are done press

esc and finally two keys Shift + ZZ together to come out of the file completely.

Display Content of a File

You can use cat command to see the content of a file. Following is the simple example to see the

content of above created file −

You can display line numbers by using -b option along with cat command as follows −

Counting Words in a File

You can use the wc command to get a count of the total number of lines, words, and characters

contained in a file. Following is the simple example to see the information about above created

file −

Here is the detail of all the four columns −

 First Column: represents total number of lines in the file.

 Second Column: represents total number of words in the file.

$ cat filename

This is unix file....I created it for the first time.....

I'm going to save this content in this file.

$

$ cat -b filename

1 This is unix file....I created it for the first time.....

2 I'm going to save this content in this file.

$

$ wc filename

2 19 103 filename

$

Linux Programming Unit-I

12

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

 Third Column: represents total number of bytes in the file. This is actual size of the file.

 Fourth Column: represents file name.

You can give multiple files at a time to get the information about those file. Here is simple

syntax −

Copying Files:

To make a copy of a file use the cp command. The basic syntax of the command is −

Following is the example to create a copy of existing file filename.

Now you would find one more file copyfile in your current directory. This file would be exactly

same as original file filename.

Renaming Files

To change the name of a file use the mv command. Its basic syntax is −

Following is the example which would rename existing file filename tonewfile:

The mv command would move existing file completely into new file. So in this case you would

fine only newfile in your current directory.

$ wc filename1 filename2 filename3

$ cp source_file destination_file

$ cp filename copyfile

$

$ mv old_file new_file

$ mv filename newfile

$

Linux Programming Unit-I

13

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Deleting Files

To delete an existing file use the rm command. Its basic syntax is −

Caution: It may be dangerous to delete a file because it may contain useful information. So be

careful while using this command. It is recommended to use-i option along with rm command.

Following is the example which would completely remove existing filefilename:

You can remove multiple files at a tile as follows −

Standard Unix Streams

Under normal circumstances every Unix program has three streams (files) opened for it when it

starts up −

 stdin − This is referred to as standard input and associated file descriptor is 0. This is also

represented as STDIN. Unix program would read default input from STDIN.

 stdout − This is referred to as standard output and associated file descriptor is 1. This is also

represented as STDOUT. Unix program would write default output at STDOUT

 stderr − This is referred to as standard error and associated file descriptor is 2. This is also

represented as STDERR. Unix program would write all the error message at STDERR.

$ rm filename

$ rm filename

$

$ rm filename1 filename2 filename3

$

Linux Programming Unit-I

14

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

iii) Security related utilities: chmod,chown,

File ownership is an important component of UNIX that provides a secure method for storing

files. Every file in UNIX has the following attributes −

 Owner permissions − The owner's permissions determine what actions the owner of the

file can perform on the file.

 Group permissions − The group's permissions determine what actions a user, who is a

member of the group that a file belongs to, can perform on the file.

 Other (world) permissions − The permissions for others indicate what action all other

users can perform on the file.

The Permission Indicators

While using ls -l command it displays various information related to file permission as follows

−

Here first column represents different access mode ie. permission associated with a file or

directory.

The permissions are broken into groups of threes, and each position in the group denotes a

specific permission, in this order: read (r), write (w), execute (x) −

 The first three characters (2-4) represent the permissions for the file's owner. For example

-rwxr-xr-- represents that owner has read (r), write (w) and execute (x) permission.

 The second group of three characters (5-7) consists of the permissions for the group to

which the file belongs. For example -rwxr-xr--represents that group has read (r) and

execute (x) permission but no write permission.

$ls -l /home/amrood

-rwxr-xr-- 1 amrood users 1024 Nov 2 00:10 myfile

drwxr-xr--- 1 amrood users 1024 Nov 2 00:10 mydir

Linux Programming Unit-I

15

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

 The last group of three characters (8-10) represents the permissions for everyone else.

For example -rwxr-xr-- represents that other world has read (r) only permission.

File Access Modes

The permissions of a file are the first line of defense in the security of a Unix system. The basic

building blocks of Unix permissions are the read, write, andexecute permissions, which are

described below −

1. Read

Grants the capability to read ie. view the contents of the file.

2. Write

Grants the capability to modify, or remove the content of the file.

3. Execute

User with execute permissions can run a file as a program.

Directory Access Modes

Directory access modes are listed and organized in the same manner as any other file. There are

a few differences that need to be mentioned:

1. Read

Access to a directory means that the user can read the contents. The user can look at the

filenames inside the directory.

2. Write

Access means that the user can add or delete files to the contents of the directory.

3. Execute

Executing a directory doesn't really make a lot of sense so think of this as a traverse permission.

A user must have execute access to the bin directory in order to execute ls or cd command.

Linux Programming Unit-I

16

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Changing Permissions

To change file or directory permissions, you use the chmod (change mode) command. There are

two ways to use chmod: symbolic mode and absolute mode.

Using chmod in Symbolic Mode

The easiest way for a beginner to modify file or directory permissions is to use the symbolic

mode. With symbolic permissions you can add, delete, or specify the permission set you want

by using the operators in the following table.

Chmod operator Description

+ Adds the designated permission(s) to a file or directory.

- Removes the designated permission(s) from a file or directory.

= Sets the designated permission(s).

Here's an example using testfile. Running ls -1 on testfile shows that the file's permissions are

as follows −

Then each example chmod command from the preceding table is run on testfile, followed by ls -

l so you can see the permission changes −

$ls -l testfile

-rwxrwxr-- 1 amrood users 1024 Nov 2 00:10 testfile

$chmod o+wx testfile

$ls -l testfile

-rwxrwxrwx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod u-x testfile

$ls -l testfile

-rw-rwxrwx 1 amrood users 1024 Nov 2 00:10 testfile

Linux Programming Unit-I

17

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Here's how you could combine these commands on a single line:

Using chmod with Absolute Permissions

The second way to modify permissions with the chmod command is to use a number to specify

each set of permissions for the file.

Each permission is assigned a value, as the following table shows, and the total of each set of

permissions provides a number for that set.

Number Octal Permission Representation Ref

0 No permission ---

1 Execute permission --x

2 Write permission -w-

3 Execute and write permission: 1 (execute) + 2 (write) = 3 -wx

4 Read permission r--

5 Read and execute permission: 4 (read) + 1 (execute) = 5 r-x

$chmod g=rx testfile

$ls -l testfile

-rw-r-xrwx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod o+wx,u-x,g=rx testfile

$ls -l testfile

-rw-r-xrwx 1 amrood users 1024 Nov 2 00:10 testfile

Linux Programming Unit-I

18

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

6 Read and write permission: 4 (read) + 2 (write) = 6 rw-

7 All permissions: 4 (read) + 2 (write) + 1 (execute) = 7 rwx

hanging Owners and Groups

While creating an account on Unix, it assigns a owner ID and a group ID to each user. All the

permissions mentioned above are also assigned based on Owner and Groups.

Two commands are available to change the owner and the group of files −

 chown − The chown command stands for "change owner" and is used to change the

owner of a file.

 chgrp − The chgrp command stands for "change group" and is used to change the group

of a file.

Changing Ownership

The chown command changes the ownership of a file. The basic syntax is as follows −

The value of user can be either the name of a user on the system or the user id (uid) of a user on

the system.

Following example −

Changes the owner of the given file to the user amrood.

iv) Process Utilities:

e operating system tracks processes through a five digit ID number known as the pid or process

ID . Each process in the system has a unique pid.

$ chown user filelist

$ chown amrood testfile

$

Linux Programming Unit-I

19

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Pids eventually repeat because all the possible numbers are used up and the next pid rolls or starts

over. At any one time, no two processes with the same pid exist in the system because it is the pid

that UNIX uses to track each process.

Starting a Process

When you start a process (run a command), there are two ways you can run it −

 Foreground Processes

 Background Processes

Foreground Processes

By default, every process that you start runs in the foreground. It gets its input from the keyboard

and sends its output to the screen.

You can see this happen with the ls command. If I want to list all the files in my current

directory, I can use the following command −

This would display all the files whose name start with ch and ends with .doc −

The process runs in the foreground, the output is directed to my screen, and if the ls command

wants any input (which it does not), it waits for it from the keyboard.

While a program is running in foreground and taking much time, we cannot run any other

commands (start any other processes) because prompt would not be available until program

finishes its processing and comes out.

Background Processes

A background process runs without being connected to your keyboard. If the background process

requires any keyboard input, it waits.

$ls ch*.doc

ch01-1.doc ch010.doc ch02.doc ch03-2.doc

ch04-1.doc ch040.doc ch05.doc ch06-2.doc

ch01-2.doc ch02-1.doc

Linux Programming Unit-I

20

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

The advantage of running a process in the background is that you can run other commands; you

do not have to wait until it completes to start another!

The simplest way to start a background process is to add an ampersand (&) at the end of the

command.

This would also display all the files whose name start with ch and ends with .doc −

Here if the ls command wants any input (which it does not), it goes into a stop state until I move

it into the foreground and give it the data from the keyboard.

That first line contains information about the background process - the job number and process

ID. You need to know the job number to manipulate it between background and foreground.

If you press the Enter key now, you see the following −

The first line tells you that the ls command background process finishes successfully. The

second is a prompt for another command.

Listing Running Processes

It is easy to see your own processes by running the ps (process status) command as follows −

$ls ch*.doc &

ch01-1.doc ch010.doc ch02.doc ch03-2.doc

ch04-1.doc ch040.doc ch05.doc ch06-2.doc

ch01-2.doc ch02-1.doc

[1] + Done

$

ls ch*.doc &

$ps

PID TTY TIME CMD

18358 ttyp3 00:00:00 sh

18361 ttyp3 00:01:31 abiword

Linux Programming Unit-I

21

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

One of the most commonly used flags for ps is the -f (f for full) option, which provides more

information as shown in the following example −

Here is the description of all the fields displayed by ps -f command −

Column Description

UID User ID that this process belongs to (the person running it).

PID Process ID.

PPID Parent process ID (the ID of the process that started it).

C CPU utilization of process.

STIME Process start time.

TTY Terminal type associated with the process

TIME CPU time taken by the process.

18789 ttyp3 00:00:00 ps

$ps -f

UID PID PPID C STIME TTY TIME CMD

amrood 6738 3662 0 10:23:03 pts/6 0:00 first_one

amrood 6739 3662 0 10:22:54 pts/6 0:00 second_one

amrood 3662 3657 0 08:10:53 pts/6 0:00 -ksh

amrood 6892 3662 4 10:51:50 pts/6 0:00 ps -f

Linux Programming Unit-I

22

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

CMD The command that started this process.

There are other options which can be used along with ps command −

Option Description

-a Shows information about all users

-x Shows information about processes without terminals.

-u Shows additional information like -f option.

-e Display extended information.

Stopping Processes

Ending a process can be done in several different ways. Often, from a console-based command,

sending a CTRL + C keystroke (the default interrupt character) will exit the command. This works

when process is running in foreground mode.

If a process is running in background mode then first you would need to get its Job ID using

ps command and after that you can use kill command to kill the process as follows −

$ps -f

UID PID PPID C STIME TTY TIME CMD

amrood 6738 3662 0 10:23:03 pts/6 0:00 first_one

amrood 6739 3662 0 10:22:54 pts/6 0:00 second_one

amrood 3662 3657 0 08:10:53 pts/6 0:00 -ksh

amrood 6892 3662 4 10:51:50 pts/6 0:00 ps -f

$kill 6738

Terminated

Linux Programming Unit-I

23

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Here kill command would terminate first_one process. If a process ignores a regular kill

command, you can use kill -9 followed by the process ID as follows −

Parent and Child Processes

Each unix process has two ID numbers assigned to it: Process ID (pid) and Parent process ID

(ppid). Each user process in the system has a parent process.

Most of the commands that you run have the shell as their parent. Check ps -f example where this

command listed both process ID and parent process ID.

Zombie and Orphan Processes

Normally, when a child process is killed, the parent process is told via a SIGCHLD signal. Then

the parent can do some other task or restart a new child as needed. However, sometimes the parent

process is killed before its child is killed. In this case, the "parent of all processes," init

process, becomes the new PPID (parent process ID). Sometime these processes are called orphan

process.

When a process is killed, a ps listing may still show the process with a Z state. This is a zombie,

or defunct, process. The process is dead and not being used. These processes are different from

orphan processes.They are the processes that has completed execution but still has an entry in the

process table.

Daemon Processes

Daemons are system-related background processes that often run with the permissions of root and

services requests from other processes.

A daemon process has no controlling terminal. It cannot open /dev/tty. If you do a "ps -ef" and

look at the tty field, all daemons will have a ? for the tty.

More clearly, a daemon is just a process that runs in the background, usually waiting for

something to happen that it is capable of working with, like a printer daemon is waiting for print

commands.

$kill -9 6738

Terminated

Linux Programming Unit-I

24

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

If you have a program which needs to do long processing then its worth to make it a daemon

and run it in background.

The top Command

The top command is a very useful tool for quickly showing processes sorted by various criteria.

It is an interactive diagnostic tool that updates frequently and shows information about physical

and virtual memory, CPU usage, load averages, and your busy processes.

Here is simple syntax to run top command and to see the statistics of CPU utilization by

different processes −

Job ID Versus Process ID

Background and suspended processes are usually manipulated via job number (job ID). This

number is different from the process ID and is used because it is shorter.

In addition, a job can consist of multiple processes running in series or at the same time, in

parallel, so using the job ID is easier than tracking the individual processes.

V. Disk Utilities:

The df Command

The first way to manage your partition space is with the df (disk free) command. The command

df -k (disk free) displays the disk space usage in kilobytes, as shown below −

$top

$df -k

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/vzfs 10485760 7836644 2649116 75% /

/devices 0 0 0 0% /devices

$

Linux Programming Unit-I

25

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Some of the directories, such as /devices, shows 0 in the kbytes, used, and avail columns as well

as 0% for capacity. These are special (or virtual) file systems, and although they reside on the

disk under /, by themselves they do not take up disk space.

The df -k output is generally the same on all Unix systems. Here's what it usually includes −

Column Description

Filesystem The physical file system name.

kbytes Total kilobytes of space available on the storage medium.

used Total kilobytes of space used (by files).

avail Total kilobytes available for use.

capacity Percentage of total space used by files.

Mounted on What the file system is mounted on.

You can use the -h (human readable) option to display the output in a format that shows the size

in easier-to-understand notation.

The du Command

The du (disk usage) command enables you to specify directories to show disk space usage on a

particular directory.

This command is helpful if you want to determine how much space a particular directory is taking.

Following command would display number of blocks consumed by each directory. A single block

may take either 512 Bytes or 1 Kilo Byte depending on your system.

Linux Programming Unit-I

26

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

The -h option makes the output easier to comprehend −

Vi. Networking Commands

The ping Utility

The ping command sends an echo request to a host available on the network. Using this

command you can check if your remote host is responding well or not.

The ping command is useful for the following −

 Tracking and isolating hardware and software problems.

 Determining the status of the network and various foreign hosts.

 Testing, measuring, and managing networks.

Syntax

Following is the simple syntax to use ping command −

$du /etc

10 /etc/cron.d

126 /etc/default

6 /etc/dfs

...

$

$du -h /etc

5k /etc/cron.d

63k /etc/default

3k /etc/dfs

...

$

Linux Programming Unit-I

27

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Above command would start printing a response after every second. To come out of the

command you can terminate it by pressing CNTRL + C keys.

Example

Following is the example to check the availability of a host available on the network −

If a host does not exist then it would behave something like this −

The ftp Utility

Here ftp stands for File Transfer Protocol. This utility helps you to upload and download your

file from one computer to another computer.

The ftp utility has its own set of UNIX like commands which allow you to perform tasks such

as −

$ping hostname or ip-address

$ping google.com

PING google.com (74.125.67.100) 56(84) bytes of data.

64 bytes from 74.125.67.100: icmp_seq=1 ttl=54 time=39.4 ms

64 bytes from 74.125.67.100: icmp_seq=2 ttl=54 time=39.9 ms

64 bytes from 74.125.67.100: icmp_seq=3 ttl=54 time=39.3 ms

64 bytes from 74.125.67.100: icmp_seq=4 ttl=54 time=39.1 ms

64 bytes from 74.125.67.100: icmp_seq=5 ttl=54 time=38.8 ms

--- google.com ping statistics ---

22 packets transmitted, 22 received, 0% packet loss, time 21017ms

rtt min/avg/max/mdev = 38.867/39.334/39.900/0.396 ms

$

$ping giiiiiigle.com

ping: unknown host giiiiigle.com

$

Linux Programming Unit-I

28

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

 Connect and login to a remote host.

 Navigate directories.

 List directory contents

 Put and get files

 Transfer files as ascii, ebcdic or binary

Syntax

Following is the simple syntax to use ping command −

Above command would prompt you for login ID and password. Once you are authenticated, you

would have access on the home directory of the login account and you would be able to perform

various commands.

Few of the useful commands are listed below −

Command Description

put filename Upload filename from local machine to remote machine.

get filename Download filename from remote machine to local machine.

mput file list Upload more than one files from local machine to remote machine.

mget file list Download more than one files from remote machine to local machine.

prompt off Turns prompt off, by default you would be prompted to upload or download

$ftp hostname or ip-address

Linux Programming Unit-I

29

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

movies using mput or mget commands.

prompt on Turns prompt on.

dir List all the files available in the current directory of remote machine.

cd dirname Change directory to dirname on remote machine.

lcd dirname Change directory to dirname on local machine.

quit Logout from the current login.

It should be noted that all the files would be downloaded or uploaded to or from current

directories. If you want to upload your files in a particular directory then first you change to that

directory and then upload required files.

Example

Following is the example to show few commands −

$ftp amrood.com

Connected to amrood.com.

220 amrood.com FTP server (Ver 4.9 Thu Sep 2 20:35:07 CDT 2009)

Name (amrood.com:amrood): amrood

331 Password required for amrood.

Password:

230 User amrood logged in.

ftp> dir

200 PORT command successful.

150 Opening data connection for /bin/ls.

total 1464

Linux Programming Unit-I

30

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

drwxr-sr-x 3 amrood group 1024 Mar 11 20:04 Mail

drwxr-sr-x 2 amrood group 1536 Mar 3 18:07 Misc

drwxr-sr-x 5 amrood group 512 Dec 7 10:59 OldStuff

drwxr-sr-x 2 amrood group 1024 Mar 11 15:24 bin

drwxr-sr-x 5 amrood group 3072 Mar 13 16:10 mpl

-rw-r--r-- 1 amrood group 209671 Mar 15 10:57 myfile.out

drwxr-sr-x 3 amrood group 512 Jan 5 13:32 public

drwxr-sr-x 3 amrood group 512 Feb 10 10:17 pvm3

226 Transfer complete.

ftp> cd mpl

250 CWD command successful.

ftp> dir

200 PORT command successful.

150 Opening data connection for /bin/ls.

total 7320

-rw-r--r-- 1 amrood group 1630 Aug 8 1994 dboard.f

-rw-r----- 1 amrood group 4340 Jul 17 1994 vttest.c

226 Transfer complete.

ftp> get wave_shift

200 PORT command successful.

150 Opening data connection for wave_shift (525574 bytes).

226 Transfer complete.

528454 bytes received in 1.296 seconds (398.1 Kbytes/s)

ftp> quit

221 Goodbye.

$

Linux Programming Unit-I

31

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

The telnet Utility

Many times you would be in need to connect to a remote Unix machine and work on that machine

remotely. Telnet is a utility that allows a computer user at one site to make a connection, login

and then conduct work on a computer at another site.

Once you are login using telnet, you can perform all the activities on your remotely connect

machine. Here is example telnet session −

C:>telnet amrood.com

Trying...

Connected to amrood.com.

Escape character is '̂]'.

login: amrood

amrood's Password:

* *

* *

* WELCOME TO AMROOD.COM *

* *

* *

Last unsuccessful login: Fri Mar 3 12:01:09 IST 2009

Last login: Wed Mar 8 18:33:27 IST 2009 on pts/10

{ do your work }

$ logout

Connection closed.

Linux Programming Unit-I

32

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

The finger Utility

The finger command displays information about users on a given host. The host can be either

local or remote.

Finger may be disabled on other systems for security reasons.

Following are the simple syntax to use finger command −

Check all the logged in users on local machine as follows −

Get information about a specific user available on local machine −

Check all the logged in users on remote machine as follows −

Get information about a specific user available on remote machine −

C:>

$ finger

Login Name Tty Idle Login Time Office

amrood pts/0 Jun 25 08:03 (62.61.164.115)

$ finger amrood

Login: amrood Name: (null)

Directory: /home/amrood Shell: /bin/bash

On since Thu Jun 25 08:03 (MST) on pts/0 from 62.61.164.115

No mail.

No Plan.

$ finger @avtar.com

Login Name Tty Idle Login Time Office

amrood pts/0 Jun 25 08:03 (62.61.164.115)

$ finger amrood@avtar.com

Login: amrood Name: (null)

mailto:amrood@avtar.com

Linux Programming Unit-I

33

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

VII) Filtering commands:

The grep Command

The grep program searches a file or files for lines that have a certain pattern. The syntax is −

The name "grep" derives from the ed (a UNIX line editor) command g/re/p which means "globally

search for a regular expression and print all lines containing it."

A regular expression is either some plain text (a word, for example) and/or special characters

used for pattern matching.

The simplest use of grep is to look for a pattern consisting of a single word. It can be used in a

pipe so that only those lines of the input files containing a given string are sent to the standard

output. If you don't give grep a filename to read, it reads its standard input; that's the way all filter

programs work −

There are various options which you can use along with grep command −

Directory: /home/amrood Shell: /bin/bash

On since Thu Jun 25 08:03 (MST) on pts/0 from 62.61.164.115

No mail.

No Plan.

$grep pattern file(s)

$ls -l | grep "Aug"

-rw-rw-rw- 1 john doc 11008 Aug 6 14:10 ch02

-rw-rw-rw- 1 john doc 8515 Aug 6 15:30 ch07

-rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro

-rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros

$

Description Option

Linux Programming Unit-I

34

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

-v Print all lines that do not match pattern.

-n Print the matched line and its line number.

-l Print only the names of files with matching lines (letter "l")

-c Print only the count of matching lines.

-i Match either upper- or lowercase.

The sort Command

The sort command arranges lines of text alphabetically or numerically. The example below

sorts the lines in the food file −

The sort command arranges lines of text alphabetically by default. There are many options that

control the sorting −

$sort food

Afghani Cuisine

Bangkok Wok

Big Apple Deli

Isle of Java

Mandalay

Sushi and Sashimi

Sweet Tooth

Tio Pepe's Peppers

$

Linux Programming Unit-I

35

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Option Description

-n Sort numerically (example: 10 will sort after 2), ignore blanks and tabs.

-r Reverse the order of sort.

-f Sort upper- and lowercase together.

+x Ignore first x fields when sorting.

x) Backup Utilities:

Backup restore and disk copy with tar :

Backup restore and disk copy with tar :

– Backing up all files in a directory including subdirectories to a tape device (/dev/rmt/0),

tar cvf /dev/rmt/0 *

Viewing a tar backup on a tape

tar tvf /dev/rmt/0

Extracting tar backup from the tape

tar xvf /dev/rmt/0

(Restoration will go to present directory or original backup path depending on

relative or absolute path names used for backup)

Back up all the files in current directory to tape .

find . -depth -print | cpio -ovcB > /dev/rmt/0

cpio expects a list of files and find command provides the list , cpio has

to put these file on some destination and a > sign redirect these files to tape . This can be a file as well .

Viewing cpio files on a tape

Linux Programming Unit-I

36

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Compress/uncompress files :

To uncompress a file

Stream Editor (Sed)

sed stands for stream editor is a stream oriented editor which was created exclusively for

executing scripts. Thus all the input you feed into it passes through and goes to STDOUT and it

does not change the input file.

Invoking sed

Before we start, let us take make sure you have a local copy of /etc/passwd text file to work with

sed.

As mentioned previously, sed can be invoked by sending data through a pipe to it as follows −

cpio -ivtB < /dev/rmt/0

Restoring a cpio backup

cpio -ivcB < /dev/rmt/0

You may have to compress the files before or after the backup and it can be done with following commands .

Compressing a file

compress -v file_name

gzip filename

uncompress file_name.Z

or

gunzip filename

$ cat /etc/passwd | sed

Usage: sed [OPTION]... {script-other-script} [input-file]...

-n, --quiet, --silent

suppress automatic printing of pattern space

-e script, --expression=script

...............................

Linux Programming Unit-I

37

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

The cat command dumps the contents of /etc/passwd to sed through the pipe into sed's pattern

space. The pattern space is the internal work buffer that sed uses to do its work.

The sed General Syntax

Following is the general syntax for sed

Here, pattern is a regular expression, and action is one of the commands given in the following

table. If pattern is omitted, action is performed for every line as we have seen above.

The slash characters (/) that surround the pattern are required because they are used as

delimiters.

Range Description

p Prints the line

d Deletes the line

s/pattern1/pattern2/ Substitutes the first occurrence of pattern1 with pattern2.

Deleting All Lines with sed

Invoke sed again, but this time tell sed to use the editing command delete line, denoted by the

single letter d −

Instead of invoking sed by sending a file to it through a pipe, you can instruct sed to read the

data from a file, as in the following example.

/pattern/action

$ cat /etc/passwd | sed 'd'

$

Linux Programming Unit-I

38

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

The following command does exactly the same thing as the previous Try It Out, without the cat

command −

The sed Addresses

Sed also understands something called addresses. Addresses are either particular locations in a

file or a range where a particular editing command should be applied. When sed encounters no

addresses, it performs its operations on every line in the file.

The following command adds a basic address to the sed command you've been using −

Notice that the number 1 is added before the delete edit command. This tells sed to perform the

editing command on the first line of the file. In this example, sed will delete the first line of

/etc/password and print the rest of the file.

The sed Address Ranges

So what if you want to remove more than one line from a file? You can specify an address

range with sed as follows −

$ sed -e 'd' /etc/passwd

$

$ cat /etc/passwd | sed '1d' |more

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

$

$ cat /etc/passwd | sed '1, 5d' |more

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

$

Linux Programming Unit-I

39

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Above command would be applied on all the lines starting from 1 through 5. So it deleted first

five lines.

Try out the following address ranges −

Range Description

'4,10d' Lines starting from 4th till 10th are deleted

'10,4d' Only 10th line is deleted, because sed does not work in reverse direction.

'4,+5d' This will match line 4 in the file, delete that line, continue to delete the next five lines, and

then cease its deletion and print the rest

'2,5!d' This will deleted everything except starting from 2nd till 5th line.

'1~3d' This deletes the first line, steps over the next three lines, and then deletes the fourth line. Sed

continues applying this pattern until the end of the file.

'2~2d' This tells sed to delete the second line, step over the next line, delete the next line, and repeat

until the end of the file is reached.

'4,10p' Lines starting from 4th till 10th are printed

'4,d' This would generate syntax error.

',10d' This would also generate syntax error.

Note: While using p action, you should use -n option to avoid repetition of line printing. Check

the difference in betweek following two commands −

Linux Programming Unit-I

40

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Check the above command without -n as follows −

NAME

awk - Finds and Replaces text, database sort/validate/index

SYNOPSIS
awk 'Program' input-file1 input-file2 ... awk -f PROGRAM-FILE input-file1 input-file2 ...

DESCRIPTION

awk command searches files for text containing a pattern. When a line or text matches, awk

performs a specific action on that line/text. The Program statement tells awk what operation to

do; Program statement consists of a series of "rules" where each rule specifies one pattern to

search for, and one action to perform when a particular pattern is found. A regular expression

enclosed in slashes (/) is an awk pattern to match every input record whose text belongs to that

set.

OPTIONS

Tag

Description

-F FS

--field-separator FS

Use FS for the input field separator (the value of the 'FS' predefined variable).

-f PROGRAM-FILE

--file PROGRAM-FILE

Read the awk program source from the file PROGRAM-FILE, instead of from the

first command line argument.

-mf NNN

-mr NNN

The 'f' flag sets the maximum number of fields, and the 'r' flag sets the maximum

record size. These options are ignored by 'gawk', since 'gawk' has no predefined

limits; they are only for compatibility with the Bell Labs research version of Unix

awk.

$ cat /etc/passwd | sed -n '1,3p'

$ cat /etc/passwd | sed '1,3p'

Linux Programming Unit-I

41

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

-v VAR=VAL

--assign VAR=VAL

Assign the variable VAR the value VAL before program execution begins.

-W traditional

-W compat

--traditional

--compat

Use compatibility mode, in which 'gawk' extensions are turned off.

-W lint

--lint

Give warnings about dubious or non-portable awk constructs.

-W lint-old

--lint-old

Warn about constructs that are not available in the original Version 7 Unix version

of awk.

-W posix

--posix

Use POSIX compatibility mode, in which 'gawk' extensions are turned off and

additional restrictions apply.

-W re-interval

--re-interval

Allow interval expressions, in regexps.

-W source=PROGRAM-

TEXT

--source PROGRAM-

TEXT

Use PROGRAM-TEXT as awk program source code. This option allows mixing

command line source code with source code from files, and is particularly useful for

mixing command line programs with library functions.

--

Signal the end of options. This is useful to allow further arguments to the awk

program itself to start with a '-'. This is mainly for consistency with POSIX

argument parsing conventions.

'Program'

A series of patterns and actions

Input-File

If no Input-File is specified then awk applies the Program to "standard input",

(piped output of some other command or the terminal. Typed input will continue

until end-of-file (typing 'Control-d')

EXAMPLES

 To return the second item($2) from each line of the output from an ls - l listing.

Linux Programming Unit-I

42

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

 To print the Row Number (NR), then a dash and space ("- ") and then the first item ($1)

from each line in sample.txt.

First create a sample.txt file

 To print the first item ($1) and then the second last item $(NF-1) from each line in

sample.txt.

 To print non-empty line from a file.

 To print the length of the longest input line.

$ ls -l | awk '{print $2}'

13

17

$ awk '{print $1, $(NF-1) }' sample.txt

Sample Line

Sample Line

Sample Line

Sample Line 1

Sample Line 2

Sample Line 3

$ awk '{print NR "- " $1 }' sample.txt

1 - Sample

2 - Sample

3 - Sample

 $ awk 'NF > 0' sample.txt

$ awk '{ if (length($0) > max) max = length($0) } END { print max }' sample.txt

13

Linux Programming Unit-I

43

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

 To print seven random numbers from zero to 100, inclusive.

 To count the lines in a file

 $ awk 'END { print NR }' sample.txt

3

basic syntax of AWK:

Here the actions in the begin block are performed before processing the file and the actions in the end

block are performed after processing the file. The rest of the actions are performed while processing

the file.

Examples:

Create a file input_file with the following data. This file can be easily created using the output of ls -

l.

$ awk 'BEGIN { for (i = 1; i <= 7; i++) print int(101 * rand()) }'

24

29

85

15

59

19

81

awk 'BEGIN {start_action} {action} END {stop_action}' filename

-rw-r--r-- 1 center center 0 Dec 8 21:39 p1

-rw-r--r-- 1 center center 17 Dec 8 21:15 t1

Linux Programming Unit-I

44

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

From the data, you can observe that this file has rows and columns. The rows are separated by a new

line character and the columns are separated by a space characters. We will use this file as the input

for the examples discussed here.

1. awk '{print $1}' input_file

Here $1 has a meaning. $1, $2, $3... represents the first, second, third columns... in a row

respectively. This awk command will print the first column in each row as shown below.

To print the 4th and 6th columns in a file use awk '{print $4,$5}' input_file

Here the Begin and End blocks are not used in awk. So, the print command will be executed for each

row it reads from the file. In the next example we will see how to use the Begin and End blocks.

2. awk 'BEGIN {sum=0} {sum=sum+$5} END {print sum}' input_file

-rw-r--r-- 1 center center 26 Dec 8 21:38 t2

-rw-r--r-- 1 center center 25 Dec 8 21:38 t3

-rw-r--r-- 1 center center 43 Dec 8 21:39 t4

-rw-r--r-- 1 center center 48 Dec 8 21:39 t5

-rw-r--r--

-rw-r--r--

-rw-r--r--

-rw-r--r--

-rw-r--r--

-rw-r--r--

Linux Programming Unit-I

45

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

This will prints the sum of the value in the 5th column. In the Begin block the variable sum is

assigned with value 0. In the next block the value of 5th column is added to the sum variable. This

addition of the 5th column to the sum variable repeats for every row it processed. When all the rows

are processed the sum variable will hold the sum of the values in the 5th column. This value is

printed in the End block.

3. In this example we will see how to execute the awk script written in a file. Create a file

sum_column and paste the below script in that file

Now execute the the script using awk command as

awk -f sum_column input_file.

This will run the script in sum_column file and displays the sum of the 5th column in the input_file.

4. awk '{ if($9 == "t4") print $0;}' input_file

This awk command checks for the string "t4" in the 9th column and if it finds a match then it will

print the entire line. The output of this awk command is

5. awk 'BEGIN { for(i=1;i<=5;i++) print "square of", i, "is",i*i; }'

This will print the squares of first numbers from 1 to 5. The output of the command is

#!/usr/bin/awk -f

BEGIN {sum=0}

{sum=sum+$5}

END {print sum}

-rw-r--r-- 1 pcenter pcenter 43 Dec 8 21:39 t4

Linux Programming Unit-I

46

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Notice that the syntax of “if” and “for” are similar to the C language.

Awk Built in Variables:

You have already seen $0, $1, $2... which prints the entire line, first column, second column...

respectively. Now we will see other built in variables with examples.

FS - Input field separator variable:

So far, we have seen the fields separted by a space character. By default Awk assumes that fields in a

file are separted by space characters. If the fields in the file are separted by any other character, we

can use the FS variable to tell about the delimiter.

6. awk 'BEGIN {FS=":"} {print $2}' input_file

OR

awk -F: '{print $2}' input_file

This will print the result as

square of 1 is 1

square of 2 is 4

square of 3 is 9

square of 4 is 16

square of 5 is 25

39 p1

15 t1

38 t2

38 t3

39 t4

Linux Programming Unit-I

47

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

OFS - Output field separator variable:

By default whenever we printed the fields using the print statement the fields are displayed with

space character as delimiter. For example

7. awk '{print $4,$5}' input_file

The output of this command will be

We can change this default behavior using the OFS variable as

awk 'BEGIN {OFS=":"} {print $4,$5}' input_file

39 t5

center 0

center 17

center 26

center 25

center 43

center 48

center:0

center:17

center:26

Linux Programming Unit-I

48

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Note: print $4,$5 and print $4$5 will not work the same way. The first one displays the output with

space as delimiter. The second one displays the output without any delimiter.

NF - Number of fileds variable:

The NF can be used to know the number of fields in line

8. awk '{print NF}' input_file

This will display the number of columns in each row.

NR - number of records variable:

The NR can be used to know the line number or count of lines in a file.

9. awk '{print NR}' input_file

This will display the line numbers from 1.

10. awk 'END {print NR}' input_file

This will display the total number of lines in the file.

String functions in Awk:

Some of the string functions in awk are:

index(string,search)

length(string)

split(string,array,separator)

substr(string,position)

substr(string,position,max)

tolower(string)

toupper(string)

Advanced Examples:

1. Filtering lines using Awk split function

The awk split function splits a string into an array using the delimiter.

The syntax of split function is

split(string, array, delimiter)

center:25

center:43

center:48

Linux Programming Unit-I

49

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Now we will see how to filter the lines using the split function with an example.

The input "file.txt" contains the data in the following format

Required output: Now we have to print only the lines in which whose 2nd field has the string

"UNIX" as the 3rd field(The 2nd filed in the line is separated by comma delimiter).

The ouptut is:

The awk command for getting the output is:

1 U,N,UNIX,000

2 N,P,SHELL,111

3 I,M,UNIX,222

4 X,Y,BASH,333

5 P,R,SCRIPT,444

1 U,N,UNIX,000

3 I,M,UNIX,222

awk '{

split($2,arr,",");

if(arr[3] == "UNIX")

Linux Programming Unit-I

50

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

The Substitution Command

The substitution command, denoted by s, will substitute any string that you specify with any other

string that you specify.

To substitute one string with another, you need to have some way of telling sed where your first

string ends and the substitution string begins. This is traditionally done by bookending the two

strings with the forward slash (/) character.

The following command substitutes the first occurrence on a line of the stringroot with the string

amrood.

It is very important to note that sed substitutes only the first occurrence on a line. If the string

root occurs more than once on a line only the first match will be replaced.

To tell sed to do a global substitution, add the letter g to the end of the command as follows −

print $0

} ' file.txt

$ cat /etc/passwd | sed 's/root/amrood/'

amrood:x:0:0:root user:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

..........................

$ cat /etc/passwd | sed 's/root/amrood/g'

amrood:x:0:0:amrood user:/amrood:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

...........................

Linux Programming Unit-I

51

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Substitution Flags

There are a number of other useful flags that can be passed in addition to the g flag, and you can

specify more than one at a time.

Flag Description

g Replace all matches, not just the first match.

NUMBER Replace only NUMBERth match.

p If substitution was made, print pattern space.

w FILENAME If substitution was made, write result to FILENAME.

I or i Match in a case-insensitive manner.

M or m In addition to the normal behavior of the special regular expression characters ^ and $,

this flag causes ^ to match the empty string after a newline and $ to match the empty

string before a newline.

Using an Alternative String Separator

You may find yourself having to do a substitution on a string that includes the forward slash

character. In this case, you can specify a different separator by providing the designated character

after the s.

$ cat /etc/passwd | sed 's:/root:/amrood:g'

amrood:x:0:0:amrood user:/amrood:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

Linux Programming Unit-I

52

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

In the above example we have used : as delimeter instead of slash / because we were trying to

search /root instead of simple root.

Replacing with Empty Space

Use an empty substitution string to delete the root string from the /etc/passwd file entirely −

Address Substitution

If you want to substitute the string sh with the string quiet only on line 10, you can specify it as

follows −

Similarly, to do an address range substitution, you could do something like the following −

$ cat /etc/passwd | sed 's/root//g'

:x:0:0::/:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

$ cat /etc/passwd | sed '10s/sh/quiet/g'

root:x:0:0:root user:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/quiet

$ cat /etc/passwd | sed '1,5s/sh/quiet/g'

root:x:0:0:root user:/root:/bin/quiet

daemon:x:1:1:daemon:/usr/sbin:/bin/quiet

bin:x:2:2:bin:/bin:/bin/quiet

Linux Programming Unit-I

53

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

As you can see from the output, the first five lines had the string sh changed to quiet, but the

rest of the lines were left untouched.

The Matching Command

You would use p option along with -n option to print all the matching lines as follows −

Using Regular Expression

While matching pattern, you can use regular expression which provides more flexibility.

sys:x:3:3:sys:/dev:/bin/quiet

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

$ cat testing | sed -n '/root/p'

root:x:0:0:root user:/root:/bin/sh

[root@ip-72-167-112-17 amrood]# vi testing

root:x:0:0:root user:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

Linux Programming Unit-I

54

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Check following example which matches all the lines starting with daemon and then deleting

them −

Following is the example which would delete all the lines ending with sh −

The following table lists four special characters that are very useful in regular expressions.

Character Description

^ Matches the beginning of lines.

$ Matches the end of lines.

. Matches any single character.

* Matches zero or more occurrences of the previous character

$ cat testing | sed '/^daemon/d'

root:x:0:0:root user:/root:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

$ cat testing | sed '/sh$/d'

sync:x:4:65534:sync:/bin:/bin/sync

Linux Programming Unit-I

55

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

[chars] Matches any one of the characters given in chars, where chars is a sequence of

characters. You can use the - character to indicate a range of characters.

Matching Characters

Look at a few more expressions to demonstrate the use of the metacharacters. For example, the

following pattern −

Expression Description

/a.c/ Matches lines that contain strings such as a+c, a-c, abc, match, and a3c, whereas the

pattern

/a*c/ Matches the same strings along with strings such as ace, yacc, and arctic.

/[tT]he/ Matches the string The and the:

/^$/ Matches Blank lines

/^.*$/ Matches an entire line whatever it is.

/ */ Matches one or more spaces

/^$/ Matches Blank lines

Following table shows some frequently used sets of characters −

Set Description

Linux Programming Unit-I

56

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

[a-z] Matches a single lowercase letter

[A-Z] Matches a single uppercase letter

[a-zA-Z] Matches a single letter

[0-9] Matches a single number

[a-zA-Z0-9] Matches a single letter or number

Character Class Keywords

Some special keywords are commonly available to regexps, especially GNU utilities that employ

regexps. These are very useful for sed regular expressions as they simplify things and enhance

readability.

For example, the characters a through z as well as the characters A through Z constitute one

such class of characters that has the keyword [[:alpha:]]

Using the alphabet character class keyword, this command prints only those lines in the

/etc/syslog.conf file that start with a letter of the alphabet −

The following table is a complete list of the available character class keywords in GNU sed.

$ cat /etc/syslog.conf | sed -n '/^[[:alpha:]]/p'

authpriv.* /var/log/secure

mail.* -/var/log/maillog

cron.* /var/log/cron

uucp,news.crit /var/log/spooler

local7.* /var/log/boot.log

Linux Programming Unit-I

57

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Character Class Description

[[:alnum:]] Alphanumeric [a-z A-Z 0-9]

[[:alpha:]] Alphabetic [a-z A-Z]

[[:blank:]] Blank characters (spaces or tabs)

[[:cntrl:]] Control characters

[[:digit:]] Numbers [0-9]

[[:graph:]] Any visible characters (excludes whitespace)

[[:lower:]] Lowercase letters [a-z]

[[:print:]] Printable characters (noncontrol characters)

[[:punct:]] Punctuation characters

[[:space:]] Whitespace

[[:upper:]] Uppercase letters [A-Z]

[[:xdigit:]] Hex digits [0-9 a-f A-F]

Linux Programming Unit-I

58

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Aampersand Referencing

The sed metacharacter & represents the contents of the pattern that was matched. For instance,

say you have a file called phone.txt full of phone numbers, such as the following −

You want to make the area code (the first three digits) surrounded by parentheses for easier

reading. To do this, you can use the ampersand replacement character, like so −

Here in pattern part you are matching first 3 digits and then using & you are replacing those 3

digits with surrounding parentheses.

Using Multiple sed Commands

You can use multiple sed commands in a single sed command as follows −

Here command1 through commandN are sed commands of the type discussed previously. These

commands are applied to each of the lines in the list of files given by files.

5555551212

5555551213

5555551214

6665551215

6665551216

7775551217

$ sed -e 's/^[[:digit:]][[:digit:]][[:digit:]]/(&)/g' phone.txt

(555)5551212

(555)5551213

(555)5551214

(666)5551215

(666)5551216

(777)5551217

$ sed -e 'command1' -e 'command2' ... -e 'commandN' files

Linux Programming Unit-I

59

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Using the same mechanism, we can write above phone number example as follows −

Note − In the above example, instead of repeating the character class keyword [[:digit:]] three

times, you replaced it with \{3\}, which means to match the preceding regular expression three

times. Here I used \ to give line break you should remove this before running this command.

Back References

The ampersand metacharacter is useful, but even more useful is the ability to define specific

regions in a regular expressions so you can reference them in your replacement strings. By

defining specific parts of a regular expression, you can then refer back to those parts with a special

reference character.

To do back references, you have to first define a region and then refer back to that region. To

define a region you insert backslashed parentheses around each region of interest. The first region

that you surround with backslashes is then referenced by \1, the second region by \2, and so on.

Assuming phone.txt has the following text −

$ sed -e 's/^[[:digit:]]\{3\}/(&)/g' \

-e 's/)[[:digit:]]\{3\}/&-/g' phone.txt

(555)555-1212

(555)555-1213

(555)555-1214

(666)555-1215

(666)555-1216

(777)555-1217

(555)555-1212

(555)555-1213

(555)555-1214

(666)555-1215

(666)555-1216

Linux Programming Unit-I

60

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Now try the following command −

Note − In the above example each regular expression inside the parenthesis would be back

referenced by \1, \2 and so on. Here I used \ to give line break you should remove this before

running this command.

Shell Prompt

The prompt, $, which is called command prompt, is issued by the shell. While the prompt is

displayed, you can type a command.

The shell reads your input after you press Enter. It determines the command you want executed

by looking at the first word of your input. A word is an unbroken set of characters. Spaces and

tabs separate words.

Following is a simple example of date command which displays current date and time:

You can customize your command prompt using environment variable PS1 explained in

Environment tutorial.

(777)555-1217

$ cat phone.txt | sed 's/\(.*)\)\(.*-\)\(.*$\)/Area \

code: \1 Second: \2 Third: \3/'

Area code: (555) Second: 555- Third: 1212

Area code: (555) Second: 555- Third: 1213

Area code: (555) Second: 555- Third: 1214

Area code: (666) Second: 555- Third: 1215

Area code: (666) Second: 555- Third: 1216

Area code: (777) Second: 555- Third: 1217

$date

Thu Jun 25 08:30:19 MST 2009

Linux Programming Unit-I

61

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Shell Types

In UNIX there are two major types of shells:

 The Bourne shell. If you are using a Bourne-type shell, the default prompt is the $ character.

 The C shell. If you are using a C-type shell, the default prompt is the % character.

There are again various subcategories for Bourne Shell which are listed as follows −

 Bourne shell (sh)

 Korn shell (ksh)

 Bourne Again shell (bash)

 POSIX shell (sh)

The different C-type shells follow −

 C shell (csh)

 TENEX/TOPS C shell (tcsh)

The original UNIX shell was written in the mid-1970s by Stephen R. Bourne while he was at

AT&T Bell Labs in New Jersey.

The Bourne shell was the first shell to appear on UNIX systems, thus it is referred to as "the

shell".

The Bourne shell is usually installed as /bin/sh on most versions of UNIX. For this reason, it is

the shell of choice for writing scripts to use on several different versions of UNIX.

In this tutorial, we are going to cover most of the Shell concepts based on Borne Shell.

Linux Programming Unit-I

62

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Shell Scripts

The basic concept of a shell script is a list of commands, which are listed in the order of execution.

A good shell script will have comments, preceded by a pound sign, #, describing the steps.

There are conditional tests, such as value A is greater than value B, loops allowing us to go

through massive amounts of data, files to read and store data, and variables to read and store data,

and the script may include functions.

Shell scripts and functions are both interpreted. This means they are not compiled.

We are going to write a many scripts in the next several tutorials. This would be a simple text file

in which we would put our all the commands and several other required constructs that tell the

shell environment what to do and when to do it.

Example Script

Assume we create a test.sh script. Note all the scripts would have .shextension. Before you add

anything else to your script, you need to alert the system that a shell script is being started. This

is done using the shebang construct. For example −

This tells the system that the commands that follow are to be executed by the Bourne shell. It's

called a shebang because the # symbol is called a hash, and the ! symbol is called a bang.

To create a script containing these commands, you put the shebang line first and then add the

commands −

Shell Comments

You can put your comments in your script as follows −

#!/bin/sh

#!/bin/bash

pwd

ls

Linux Programming Unit-I

63

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Now you save the above content and make this script executable as follows −

Now you have your shell script ready to be executed as follows −

This would produce following result −

Note: To execute your any program available in current directory you would execute using

./program_name

Extended Shell Scripts

Shell scripts have several required constructs that tell the shell environment what to do and

when to do it. Of course, most scripts are more complex than above one.

The shell is, after all, a real programming language, complete with variables, control structures,

and so forth. No matter how complicated a script gets, however, it is still just a list of commands

executed sequentially.

Following script use the read command which takes the input from the keyboard and assigns it

as the value of the variable PERSON and finally prints it on STDOUT.

#!/bin/bash

Author : Zara Ali

Copyright (c) Tutorialspoint.com

Script follows here:

pwd

ls

$chmod +x test.sh

$./test.sh

/home/amrood

index.htm unix-basic_utilities.htm unix-directories.htm

test.sh unix-communication.htm unix-environment.htm

Linux Programming Unit-I

64

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Here is sample run of the script −

The following table shows a number of special variables that you can use in your shell scripts −

Variable Description

$0 The filename of the current script.

$n These variables correspond to the arguments with which a script was invoked. Here n is a

positive decimal number corresponding to the position of an argument (the first argument is

$1, the second argument is $2, and so on).

$# The number of arguments supplied to a script.

#!/bin/sh

Author : Zara Ali

Copyright (c) Tutorialspoint.com

Script follows here:

echo "What is your name?"

read PERSON

echo "Hello, $PERSON"

$./test.sh

What is your name?

Zara Ali

Hello, Zara Ali

$

Linux Programming Unit-I

65

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

$* All the arguments are double quoted. If a script receives two arguments, $* is equivalent to

$1 $2.

$@ All the arguments are individually double quoted. If a script receives two arguments, $@ is

equivalent to $1 $2.

$? The exit status of the last command executed.

$$ The process number of the current shell. For shell scripts, this is the process ID under which

they are executing.

$! The process number of the last background command.

Command-Line Arguments

The command-line arguments $1, $2, $3,...$9 are positional parameters, with $0 pointing to the

actual command, program, shell script, or function and $1, $2, $3, ...$9 as the arguments to the

command.

Following script uses various special variables related to command line −

Here is a sample run for the above script −

#!/bin/sh

echo "File Name: $0"

echo "First Parameter : $1"

echo "Second Parameter : $2"

echo "Quoted Values: $@"

echo "Quoted Values: $*"

echo "Total Number of Parameters : $#"

$./test.sh Zara Ali

Linux Programming Unit-I

66

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Special Parameters $* and $@

There are special parameters that allow accessing all of the command-line arguments at once.

$* and $@ both will act the same unless they are enclosed in double quotes, "".

Both the parameter specifies all command-line arguments but the "$*" special parameter takes

the entire list as one argument with spaces between and the "$@" special parameter takes the

entire list and separates it into separate arguments.

We can write the shell script shown below to process an unknown number of command-line

arguments with either the $* or $@ special parameters −

There is one sample run for the above script −

File Name : ./test.sh

First Parameter : Zara

Second Parameter : Ali

Quoted Values: Zara Ali

Quoted Values: Zara Ali

Total Number of Parameters : 2

#!/bin/sh

for TOKEN in $*

do

echo $TOKEN

done

$./test.sh Zara Ali 10 Years Old

Zara

Ali

10

Years

Linux Programming Unit-I

67

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Note: Here do...done is a kind of loop which we would cover in subsequent tutorial.

Exit Status

The $? variable represents the exit status of the previous command.

Exit status is a numerical value returned by every command upon its completion. As a rule,

most commands return an exit status of 0 if they were successful, and 1 if they were unsuccessful.

Some commands return additional exit statuses for particular reasons. For example, some

commands differentiate between kinds of errors and will return various exit values depending on

the specific type of failure.

Following is the example of successful command −

There are various operators supported by each shell. Our tutorial is based on default shell

(Bourne) so we are going to cover all the important Bourne Shell operators in the tutorial.

There are following operators which we are going to discuss −

 Arithmetic Operators.

Old

$./test.sh Zara Ali

File Name : ./test.sh

First Parameter : Zara

Second Parameter : Ali

Quoted Values: Zara Ali

Quoted Values: Zara Ali

Total Number of Parameters : 2

$echo $?

0

$

Linux Programming Unit-I

68

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

 Relational Operators.

 Boolean Operators.

 String Operators.

 File Test Operators.

The Bourne shell didn't originally have any mechanism to perform simple arithmetic but it uses

external programs, either awk or the must simpler program expr.

Here is simple example to add two numbers −

This would produce following result −

There are following points to note down −

 There must be spaces between operators and expressions for example 2+2 is not correct,

where as it should be written as 2 + 2.

 Complete expression should be enclosed between ``, called inverted commas.

Arithmetic Operators

There are following arithmetic operators supported by Bourne Shell.

Assume variable a holds 10 and variable b holds 20 then −

Show Examples

#!/bin/sh

val=`expr 2 + 2`

echo "Total value : $val"

Total value : 4

http://www.tutorialspoint.com/unix/unix-arithmetic-operators.htm

Linux Programming Unit-I

69

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Operator Description Example

+ Addition - Adds values on either side of the operator `expr $a + $b` will

give 30

- Subtraction - Subtracts right hand operand from left hand

operand

`expr $a - $b` will

give -10

* Multiplication - Multiplies values on either side of the operator `expr $a * $b` will

give 200

/ Division - Divides left hand operand by right hand operand `expr $b / $a` will

give 2

% Modulus - Divides left hand operand by right hand operand and

returns remainder

`expr $b % $a` will

give 0

= Assignment - Assign right operand in left operand a=$b would assign

value of b into a

== Equality - Compares two numbers, if both are same then returns

true.

[$a == $b] would

return false.

!= Not Equality - Compares two numbers, if both are different then

returns true.

[$a != $b] would

return true.

It is very important to note here that all the conditional expressions would be put inside square

braces with one spaces around them, for example [$a == $b] is correct where as [$a==$b] is

incorrect.

All the arithmetical calculations are done using long integers.

Linux Programming Unit-I

70

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Relational Operators:

Bourne Shell supports following relational operators which are specific to numeric values.

These operators would not work for string values unless their value is numeric.

For example, following operators would work to check a relation between 10 and 20 as well as

in between "10" and "20" but not in between "ten" and "twenty".

Assume variable a holds 10 and variable b holds 20 then −

Show Examples

Operator Description Example

-eq Checks if the value of two operands are equal or not, if yes then condition

becomes true.

[$a -eq

$b] is

not true.

-ne Checks if the value of two operands are equal or not, if values are not equal

then condition becomes true.

[$a -ne

$b] is

true.

-gt Checks if the value of left operand is greater than the value of right operand, if

yes then condition becomes true.

[$a -gt

$b] is

not true.

-lt Checks if the value of left operand is less than the value of right operand, if yes

then condition becomes true.

[$a -lt

$b] is

true.

-ge Checks if the value of left operand is greater than or equal to the value of right

operand, if yes then condition becomes true.

[$a -ge

$b] is

not true.

http://www.tutorialspoint.com/unix/unix-relational-operators.htm

Linux Programming Unit-I

71

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

-le Checks if the value of left operand is less than or equal to the value of right

operand, if yes then condition becomes true.

[$a -le

$b] is

true.

It is very important to note here that all the conditional expressions would be put inside square

braces with one spaces around them, for example [$a <= $b] is correct where as [$a <= $b] is

incorrect.

Boolean Operators

There are following boolean operators supported by Bourne Shell.

Assume variable a holds 10 and variable b holds 20 then −

Show Examples

Operator Description Example

! This is logical negation. This inverts a true condition into false and vice versa. [! false]

is true.

-o This is logical OR. If one of the operands is true then condition would be true. [$a -lt

20 -o $b

-gt 100]

is true.

-a This is logical AND. If both the operands are true then condition would be true

otherwise it would be false.

[$a -lt

20 -a $b

-gt 100]

is false.

String Operators

There are following string operators supported by Bourne Shell.

http://www.tutorialspoint.com/unix/unix-boolean-operators.htm

Linux Programming Unit-I

72

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Assume variable a holds "abc" and variable b holds "efg" then −

Show Examples

Operator Description Example

= Checks if the value of two operands are equal or not, if yes then condition

becomes true.

[$a = $b

] is not

true.

!= Checks if the value of two operands are equal or not, if values are not equal

then condition becomes true.

[$a !=

$b] is

true.

-z Checks if the given string operand size is zero. If it is zero length then it

returns true.

[-z $a]

is not

true.

-n Checks if the given string operand size is non-zero. If it is non-zero length then

it returns true.

[-n $a]

is not

false.

str Check if str is not the empty string. If it is empty then it returns false. [$a] is

not false.

File Test Operators

There are following operators to test various properties associated with a Unix file.

Assume a variable file holds an existing file name "test" whose size is 100 bytes and has read,

write and execute permission on −

Show Examples

http://www.tutorialspoint.com/unix/unix-string-operators.htm
http://www.tutorialspoint.com/unix/unix-file-operators.htm

Linux Programming Unit-I

73

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Operator Description Example

-b file Checks if file is a block special file if yes then condition becomes

true.

[-b $file] is false.

-c file Checks if file is a character special file if yes then condition

becomes true.

[-c $file] is false.

-d file Check if file is a directory if yes then condition becomes true. [-d $file] is not

true.

-f file Check if file is an ordinary file as opposed to a directory or special

file if yes then condition becomes true.

[-f $file] is true.

-g file Checks if file has its set group ID (SGID) bit set if yes then

condition becomes true.

[-g $file] is false.

-k file Checks if file has its sticky bit set if yes then condition becomes

true.

[-k $file] is false.

-p file Checks if file is a named pipe if yes then condition becomes true. [-p $file] is false.

-t file Checks if file descriptor is open and associated with a terminal if yes

then condition becomes true.

[-t $file] is false.

-u file Checks if file has its set user id (SUID) bit set if yes then condition

becomes true.

[-u $file] is false.

-r file Checks if file is readable if yes then condition becomes true. [-r $file] is true.

Linux Programming Unit-I

74

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

-w file Check if file is writable if yes then condition becomes true. [-w $file] is true.

-x file Check if file is execute if yes then condition becomes true. [-x $file] is true.

-s file Check if file has size greater than 0 if yes then condition becomes

true.

[-s $file] is true.

-e file Check if file exists. Is true even if file is a directory but exists. [-e $file] is true.

 The if...else statements

 The case...esac statement

The if...else statements:

If else statements are useful decision making statements which can be used to select an option

from a given set of options.

Unix Shell supports following forms of if..else statement −

 if...fi statement

 if...else...fi statement

 if...elif...else...fi statement

Most of the if statements check relations using relational operators discussed in previous chapter.

The case...esac Statement

You can use multiple if...elif statements to perform a multiway branch. However, this is not

always the best solution, especially when all of the branches depend on the value of a single

variable.

http://www.tutorialspoint.com/unix/if-fi-statement.htm
http://www.tutorialspoint.com/unix/if-else-statement.htm
http://www.tutorialspoint.com/unix/if-elif-statement.htm

Linux Programming Unit-I

75

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Unix Shell supports case...esac statement which handles exactly this situation, and it does so

more efficiently than repeated if...elif statements.

There is only one form of case...esac statement which is detailed here −

 case...esac statement

Unix Shell's case...esac is very similar to switch...case statement we have in other programming

languages like C or C++ and PERL etc.

Loops are a powerful programming tool that enable you to execute a set of commands repeatedly.

In this tutorial, you would examine the following types of loops available to shell programmers

−

 The while loop

 The for loop

 The until loop

 The select loop

You would use different loops based on dfferent situation. For example while loop would execute

given commands until given condition remains true where as until loop would execute until a

given condition becomes true.

Once you have good programming practice you would start using appropriate loop based on

situation. Here while and for loops are available in most of the other programming languages like

C, C++ and PERL etc.

Nesting Loops

All the loops support nesting concept which means you can put one loop inside another similar

or different loops. This nesting can go upto unlimited number of times based on your requirement.

http://www.tutorialspoint.com/unix/case-esac-statement.htm
http://www.tutorialspoint.com/unix/while-loop.htm
http://www.tutorialspoint.com/unix/for-loop.htm
http://www.tutorialspoint.com/unix/until-loop.htm
http://www.tutorialspoint.com/unix/select-loop.htm

Linux Programming Unit-I

76

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Here is an example of nesting while loop and similar way other loops can be nested based on

programming requirement −

Nesting while Loops

It is possible to use a while loop as part of the body of another while loop.

Syntax

Example

Here is a simple example of loop nesting, let's add another countdown loop inside the loop that

you used to count to nine −

while command1 ; # this is loop1, the outer loop

do

Statement(s) to be executed if command1 is true

while command2 ; # this is loop2, the inner loop

do

Statement(s) to be executed if command2 is true

done

Statement(s) to be executed if command1 is true

done

#!/bin/sh

a=0

while ["$a" -lt 10] # this is loop1

do

b="$a"

while ["$b" -ge 0] # this is loop2

do

Linux Programming Unit-I

77

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

This will produce following result. It is important to note how echo -n works here. Here -

n option let echo to avoid printing a new line character.

What is Substitution?

The shell performs substitution when it encounters an expression that contains one or more

special characters.

Example

Following is the example, while printing value of the variable its substitued by its value. Same

time "\n" is substituted by a new line −

echo -n "$b "

b=`expr $b - 1`

done

echo

a=`expr $a + 1`

done

0

1 0

2 1 0

3 2 1 0

4 3 2 1 0

5 4 3 2 1 0

6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

#!/bin/sh

a=10

Linux Programming Unit-I

78

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

This would produce following result. Here -e option enables interpretation of backslash escapes.

Command Substitution

Command substitution is the mechanism by which the shell performs a given set of commands

and then substitutes their output in the place of the commands.

Syntax

The command substitution is performed when a command is given as:

When performing command substitution make sure that you are using the backquote, not the

single quote character.

Example

Command substitution is generally used to assign the output of a command to a variable. Each

of the following examples demonstrate command substitution −

This will produce following result −

echo -e "Value of a is $a \n"

Value of a is 10

`command`

#!/bin/sh

DATE=`date`

echo "Date is $DATE"

USERS=`who | wc -l`

echo "Logged in user are $USERS"

UP=`date ; uptime`

echo "Uptime is $UP"

Linux Programming Unit-I

79

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Variable Substitution

Variable substitution enables the shell programmer to manipulate the value of a variable based

on its state.

Here is the following table for all the possible substitutions −

Form Description

${var} Substitue the value of var.

${var:-word} If var is null or unset, word is substituted for var. The value of var does not

change.

${var:=word} If var is null or unset, var is set to the value of word.

${var:?message} If var is null or unset, message is printed to standard error. This checks that

variables are set correctly.

${var:+word} If var is set, word is substituted for var. The value of vardoes not change.

Example

Following is the example to show various states of the above substitution −

Date is Thu Jul 2 03:59:57 MST 2009

Logged in user are 1

Uptime is Thu Jul 2 03:59:57 MST 2009

03:59:57 up 20 days, 14:03, 1 user, load avg: 0.13, 0.07, 0.15

#!/bin/sh

echo ${var:-"Variable is not set"}

Linux Programming Unit-I

80

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

This would produce following result −

echo "1 - Value of var is ${var}"

echo ${var:="Variable is not set"}

echo "2 - Value of var is ${var}"

unset var

echo ${var:+"This is default value"}

echo "3 - Value of var is $var"

var="Prefix"

echo ${var:+"This is default value"}

echo "4 - Value of var is $var"

echo ${var:?"Print this message"}

echo "5 - Value of var is ${var}"

Variable is not set

1 - Value of var is

Variable is not set

2 - Value of var is Variable is not set

3 - Value of var is

This is default value

4 - Value of var is Prefix

Prefix

5 - Value of var is Prefix

Linux Programming Unit-I

81

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

The Metacharacters

Unix Shell provides various metacharacters which have special meaning while using them in

any Shell Script and causes termination of a word unless quoted.

For example ? matches with a single charater while listing files in a directory and an * would

match more than one characters. Here is a list of most of the shell special characters (also called

metacharacters) −

A character may be quoted (i.e., made to stand for itself) by preceding it with a \.

Example

Following is the example which show how to print a * or a ? −

This would produce following result −

Now let us try using a quoted character −

This would produce following result −

* ? [] ' " \ $; & () | ^ < > new-line space tab

#!/bin/sh

echo Hello; Word

Hello

./test.sh: line 2: Word: command not found

shell returned 127

#!/bin/sh

echo Hello\; Word

Hello; Word

Linux Programming Unit-I

82

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

The $ sign is one of the metacharacters, so it must be quoted to avoid special handling by the

shell −

This would produce following result −

There are following four forms of quotings −

Quoting Description

Single quote All special characters between these quotes lose their special meaning.

Double quote Most special characters between these quotes lose their special meaning with

these exceptions:

 $

 `

 \$

 \'

 \"

 \\

Backslash Any character immediately following the backslash loses its special meaning.

Back Quote Anything in between back quotes would be treated as a command and would be

executed.

#!/bin/sh

echo "I have \$1200"

I have $1200

Linux Programming Unit-I

83

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

The Single Quotes

Consider an echo command that contains many special shell characters −

Putting a backslash in front of each special character is tedious and makes the line difficult to

read −

There is an easy way to quote a large group of characters. Put a single quote (') at the beginning

and at the end of the string −

Any characters within single quotes are quoted just as if a backslash is in front of each

character. So now this echo command displays properly.

If a single quote appears within a string to be output, you should not put the whole string within

single quotes instead you whould preceed that using a backslash (\) as follows −

The Double Quotes

Try to execute the following shell script. This shell script makes use of single quote −

This would produce following result −

echo <-$1500.**>; (update?) [y|n]

echo \<-\$1500.**\>\; \(update\?\) \[y\|n\]

echo '<-$1500.**>; (update?) [y|n]'

echo 'It\'s Shell Programming'

VAR=ZARA

echo '$VAR owes <-$1500.**>; [as of (`date +%m/%d`)]'

$VAR owes <-$1500.**>; [as of (`date +%m/%d`)]

Linux Programming Unit-I

84

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

So this is not what you wanted to display. It is obvious that single quotes prevent variable

substitution. If you want to substitute variable values and to make invert commas work as

expected then you would need to put your commands in double quotes as follows −

Now this would produce following result −

Double quotes take away the special meaning of all characters except the following −

 $ for parameter substitution.

 Backquotes for command substitution.

 \$ to enable literal dollar signs.

 \` to enable literal backquotes.

 \" to enable embedded double quotes.

 \\ to enable embedded backslashes.

 All other \ characters are literal (not special).

Any characters within single quotes are quoted just as if a backslash is in front of each

character. So now this echo command displays properly.

If a single quote appears within a string to be output, you should not put the whole string within

single quotes instead you whould preceed that using a backslash (\) as follows −

The Back Quotes

Putting any Shell command in between back quotes would execute the command

VAR=ZARA

echo "$VAR owes <-\$1500.**>; [as of (`date +%m/%d`)]"

ZARA owes <-$1500.**>; [as of (07/02)]

echo 'It\'s Shell Programming'

Linux Programming Unit-I

85

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Syntax:

Here is the simple syntax to put any Shell command in between back quotes −

Example

Example

Following would execute date command and produced result would be stored in DATA

variable.

This would produce following result −

Output Redirection

The output from a command normally intended for standard output can be easily diverted to a

file instead. This capability is known as output redirection:

If the notation > file is appended to any command that normally writes its output to standard

output, the output of that command will be written to file instead of your terminal −

Check following who command which would redirect complete output of the command in users

file.

Notice that no output appears at the terminal. This is because the output has been redirected

from the default standard output device (the terminal) into the specified file. If you would check

users file then it would have complete content −

var=`command`

DATE=`date`

echo "Current Date: $DATE"

Current Date: Thu Jul 2 05:28:45 MST 2009

$ who > users

$ cat users

Linux Programming Unit-I

86

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

If a command has its output redirected to a file and the file already contains some data, that data

will be lost. Consider this example −

You can use >> operator to append the output in an existing file as follows −

Input Redirection

Just as the output of a command can be redirected to a file, so can the input of a command be

redirected from a file. As the greater-than character > is used for output redirection, the less- than

character < is used to redirect the input of a command.

The commands that normally take their input from standard input can have their input redirected

from a file in this manner. For example, to count the number of lines in the file users generated

above, you can execute the command as follows −

oko tty01 Sep 12 07:30

ai tty15 Sep 12 13:32

ruth tty21 Sep 12 10:10

pat tty24 Sep 12 13:07

steve tty25 Sep 12 13:03

$

$ echo line 1 > users

$ cat users

line 1

$

$ echo line 2 >> users

$ cat users

line 1

line 2

$

$ wc -l users

Linux Programming Unit-I

87

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Here it produces output 2 lines. You can count the number of lines in the file by redirecting the

standard input of the wc command from the file users −

Note that there is a difference in the output produced by the two forms of the wc command. In

the first case, the name of the file users is listed with the line count; in the second case, it is not.

In the first case, wc knows that it is reading its input from the file users. In the second case, it

only knows that it is reading its input from standard input so it does not display file name.

Here Document

A here document is used to redirect input into an interactive shell script or program.

We can run an interactive program within a shell script without user action by supplying the

required input for the interactive program, or interactive shell script.

The general form for a here document is −

Here the shell interprets the << operator as an instruction to read input until it finds a line

containing the specified delimiter. All the input lines up to the line containing the delimiter are

then fed into the standard input of the command.

The delimiter tells the shell that the here document has completed. Without it, the shell continues

to read input forever. The delimiter must be a single word that does not contain spaces or tabs.

2 users

$

$ wc -l < users

2

$

command << delimiter

document

delimiter

Linux Programming Unit-I

88

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Following is the input to the command wc -l to count total number of line −

You can use here document to print multiple lines using your script as follows −

This would produce following result −

The following script runs a session with the vi text editor and save the input in the file test.txt.

$wc -l << EOF

This is a simple lookup program

for good (and bad) restaurants

in Cape Town.

EOF

3

$

#!/bin/sh

cat << EOF

This is a simple lookup program

for good (and bad) restaurants

in Cape Town.

EOF

This is a simple lookup program

for good (and bad) restaurants

in Cape Town.

#!/bin/sh

filename=test.txt

vi $filename <<EndOfCommands

i

Linux Programming Unit-I

89

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

If you run this script with vim acting as vi, then you will likely see output like the following −

After running the script, you should see the following added to the file test.txt −

Discard the output

Sometimes you will need to execute a command, but you don't want the output displayed to the

screen. In such cases you can discard the output by redirecting it to the file /dev/null −

Here command is the name of the command you want to execute. The file /dev/null is a special

file that automatically discards all its input.

To discard both output of a command and its error output, use standard redirection to redirect

STDERR to STDOUT −

Here 2 represents STDERR and 1 represents STDOUT. You can display a message on to

STDERR by redirecting STDOUT into STDERR as follows −

This file was created automatically from

a shell script

^[

ZZ

EndOfCommands

$ sh test.sh

Vim: Warning: Input is not from a terminal

$

$ cat test.txt

This file was created automatically from

a shell script

$

$ command > /dev/null

$ command > /dev/null 2>&1

Linux Programming Unit-I

90

CMR TECHNICAL CAMPUS DEPARTMENT OF IT

Redirection Commands

Following is the complete list of commands which you can use for redirection −

Command Description

pgm > file Output of pgm is redirected to file

pgm < file Program pgm reads its input from file.

pgm >> file Output of pgm is appended to file.

n > file Output from stream with descriptor n redirected to file.

n >> file Output from stream with descriptor n appended to file.

n >& m Merge output from stream n with stream m.

n <& m Merge input from stream n with stream m.

<< tag Standard input comes from here through next tag at start of line.

| Takes output from one program, or process, and sends it to another.

Note that file descriptor 0 is normally standard input (STDIN), 1 is standard output (STDOUT),

and 2 is standard error output (STDERR).

$ echo message 1>&2

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 1

UNIT II

Syllabus

Files and Directories - File Concept, File types, File System Structure, file metadata –Inodes,

kernel support for files, system calls for file I/O operations -open,

creat,read,write,close,lseek,dup2, file status information –stat family, file and record locking –

fcntl function, file permissions –chmod, fchmod, file ownership –chown, lchown, fchown, links

–soft links and hard links –symlink, link, unlink.

Directories –Creating, removing and changing Directories –mkdir, rmdir,chdir,obtaining current

working directory –getcwd, Directory contents, Scanning Directories- opendir, readdir, closedir,

rewinddir functions.

File Concept

At the very top of the file system is single directory called "root" which is represented by a / (slash).

All other files are "descendents" of root. The number of levels is largely arbitrary, although most

UNIX systems share some organizational similarities.

File Types

The UNIX filesystem contains several different types of files:

 Ordinary Files

o Used to store your information, such as some text you have written or an

image you have drawn. This is the type of file that you usually work with.

o Always located within/under a directory file

o Do not contain other files

 Directories

o Branching points in the hierarchical tree

o Used to organize groups of files

o May contain ordinary files, special files or other directories
o Never contain "real" information which you would work with (such as

text). Basically, just used for organizing files.

o All files are descendants of the root directory, (named /) located at the

top of the tree.

 Special Files
o Used to represent a real physical device such as a printer, tape drive or

terminal, used for Input/Ouput (I/O) operations

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 2

o Unix considers any device attached to the system to be a file - including

your terminal:

 By default, a command treats your terminal as the standard input

file (stdin) from which to read its input

 Your terminal is also treated as the standard output file (stdout) to

which a command's output is sent

 Stdin and stdout will be discussed in more detail later

o Two types of I/O: character and block

o Usually only found under directories named /dev

 Pipes
o UNIX allows you to link commands together using a pipe. The pipe acts

a temporary file which only exists to hold data from one command until it

is read by another

o For example, to pipe the output from one command into another

command:
o

o who | wc -l

Hierarchical File Structure

A file system is a logical collection of files on a partition or disk. A partition is a container for

information and can span an entire hard drive if desired.

Your hard drive can have various partitions which usually contains only one file system, such as

one file system housing the / file system or another containing the /home file system.

One file system per partition allows for the logical maintenance and management of differing

file systems.

Everything in Unix is considered to be a file, including physical devices such as DVD-ROMs,

USB devices, floppy drives, and so forth.

All of the files in the UNIX file system are organized into a multi-leveled hierarchy called a

directory tree.

A family tree is an example of a hierarchical structure that represents how the UNIX file system

is organized. The UNIX file system might also be envisioned as an inverted tree or the root

system of plant.

At the very top of the file system is single directory called "root" which is represented by a /

(slash). All other files are "descendents" of root.

The number of levels is largely arbitrary, although most UNIX systems share some

organizational similarities. The "standard" UNIX file system is discussed later.

Example:

/ (root)

|

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 3

| | |
/bin /usr /tmp
 |

 |

| | | |

/public /misc /staff /students

| | |

| | | | | | | | | |

/software /doc /john /mary /bill /carl /tom /dick /mary /lisa

File metadata

An inode is an entry in inode table, containing information (the metadata) about a regular file

and directory. An inode is a data structure on a traditional Unix-style file system such as ext3 or

ext4. Inode number also called as index number , it consists following attributes

Commands to access Inode numbers

Following are some commands to access the Inode numbers for files :

1) ls -i Command

the flag -i is used to print the Inode number for each file.

Kernel Supports for files:

To understand the file system, you must first think about how the kernel organizing and maintains information. The

kernel does a lot of book keeping; it needs to know which process are running, what their memory layout is, what

$ ls -i

1448240 a 1441807 Desktop 1447344 mydata 1441813 Pictures 1442737 testfile 1448145 worm

1448240 a1 1441811 Documents 1442707 my_ls 1442445 practice 1442739 test.py

1447139 alpha 1441808 Downloads 1447278 my_ls_alpha.c 1441810 Public 1447099

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 4

open filres they have, and etc. To support this, the kernel maintains three important tables for managing open files

for a process: the process table, the file table, and the v-node/i-node info.

Fig. Kernel File System Data Structures

Introduction to System Calls

System calls are commands that are executed by the operating system. "System calls are the only

way to access kernel facilities such as file system, multitasking mechanisms and the interprocess

communication primitives."(Rochkind's book, Advanced Unix Programming)

Here is a short list of System Calls that we may be using in your labs:

 For file I/0

o creat(name, permissions)

o open(name, mode)

o close(fd)

o read(fd, buffer, num)

o write(fd, buffer, num)

o stat(name, buffer)

o fstat(fd, buffer)
 For process control

o fork()

o wait(status)

o execl(), execlp(), execv(), execvp()

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 5

o exit()

o signal(sig, handler)

o kill(sig, pid)

 For interprocess communication

o pipe(fildes)

System Calls versus Library Routines

The tricky thing about system calls is that they look very much like a library routine (or a regular

function) that you have already been using (for instance, printf). The only way to tell which is a

library routine and which is a system call is to remember which is which.

Another way to obtain information about the system call is to refer to Section 2 of the man pages.

For instance, to find more about the "read" system call you could type:

By contrast, on our current version of Linux, if you try:

Section 1 of the library will be displayed (indicated by the 1 in parenthesis).

Section 3 contains library routines. By issuing a:

you will learn more about the "fread" library routine.

Some library functions have embedded system calls. For instance, the library routines

scanf and printf make use of the system calls read and write. The relationship of library functions

and system calls is shown in the below diagram (taken from John Shapley Gray's

Interprocess Communications in UNIX)

% man -S 2 read

% man read

% man -S 3 fread

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 6

"The arrows in the diagram indicate possible paths of communication. As shown, executable

programs may make use of system calls directly to request the kernel to perform a specific

function. Or, the executable program may invoke a library function which in turn may perform

system calls." (page 4 and 5, Interprocess Communications in UNIX).

Using System Calls for File I/O

The main systems calls that will be needed for this lab are

 open()

 close()

 read()

 write()

 stat()

 fstat()

Each of these will be covered in their own subsection

open():

path is a string that contains the name and location of the file to be opened.

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open (const char *path, int flags [, mode_t mode]);

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 7

The mode of the file to be opened is determined by the oflag variable. It must have one of the

following values:

and may have one or more options bitwise OR-ed on. A few examples of options include:

Upon success, open returns a file descriptor. If the operation fails, a -1 is returned. Use the 'man -

S 2 open' command for more information on this system call.

The convenience system call creat(const char *path, mode_t mode) is equivalent to open(path,

O_WRONLY|O_CREAT|O_TRUNC, mode). Use the 'man -S 2 creat' command for more

information on this command.

When you use the O_CREAT flag you are required to provide the mode argument to set access

permissions for the new file. The permissions you supply will be AND-ed against the complement

of the user's umask. For example:

In the above example, the permissions set on "myfile" will be read and write by the user

(S_IRUSR | S_IWUSR). For more details on these modes or permissions see man -S 2 open.

close():

close() closes the file indicated by the file descriptor fildes.

The operating system will free any resources allocated to the file during its operation. Use the

'man -S 2 close' command for more information on this system call.

read():

O_RDONLY Read only mode

O_WRONLY Write only mode

O_RDWR Read/Write mode

O_APPEND If the file exists, append to it.

O_CREAT If the file does not exist create it.

O_EXCL (Only with O_CREAT.) If the file already exists,

open fails and returns an error.

O_TRUNC If the file exists and is being opened for writing,

truncate it to length 0.

outFile=open("myfile",O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);

#include < unistd.h>

int close(int fildes);

#include < unistd.h>

ssize_t read(int fildes, void *buf, size_t nbyte);

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 8

read() attempts to read nbyte bytes from the file associated with fildes into the buffer pointed to

by buf.

If nbyte is zero, read returns zero and has no other results. On success a non-negative integer is

returned indicating the number of bytes actually read. Otherwise, a -1 is returned. Use the 'man -

S 2 read' command for more information on this system call.

write():

write() attempts to write nbyte bytes from the buffer pointed to by buf to the file associated

with fildes.

If nbyte is zero and the file is a regular file, write returns zero and has no other results. On success,

write returns the number of bytes actually written. Otherwise, it returns -1. Use the command 'man

-S 2 write' for more information on this system call.

The following is a sample program reads a file and displays its contents on the screen.

#include < unistd.h>

ssize_t write(int fildes, const void *buf, size_t nbyte);

//Modified from page 7 of Interprocess Communication in Unix by John
//Shapely Gray
//Usage: a.out filename

//Displays the contents of filename

#include <cstdio>
#include <unistd.h>

#include <cstdlib>

#include <sys/types.h> //needed for open

#include <sys/stat.h> //needed for open

#include <fcntl.h> //needed for open

using namespace std;

int main (int argc, char *argv[])

{

int inFile;

int n_char=0;

char buffer[10];

inFile=open(argv[1],O_RDONLY);

if (inFile==-1)

{

exit(1);

}

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 9

You will notice that the first argument to a read/write system call is an integer value indicating the

file descriptor. When a program executes, the operating system will automatically open three file

descriptors:

 0 stdin --standard input (defaults to the keyboard)

 1 stdout --standard output (defaults to the terminal)

 2 stderr --standard error (defaults to the console device)

A write to file descriptor 1 (as in the above code) will be writing to your terminal.

stat():

stat() obtains information about the named file, and puts them in the stat structure.

This command comes in handy if you want to emulate the ls command. All the information that

you need to know about a file is given in the stat structure.

The stat structure is defined as:

mode_t st_mode; /* protection */

ino_t st_ino; /* this file's number */

dev_t st_dev; /* device file resides on */

dev_t st_rdev; /* device identifier (special files only) */

nlink_t st_nlink; /* number of hard links to the file*/

//Use the read system call to obtain 10 characters from inFile

while((n_char=read(inFile, buffer, 10))!=0)

{

//Display the characters read

n_char=write(1,buffer,n_char);

}

return 0;

}

#include < sys/types.h>

#include < sys/stat.h>

int stat(const char *path, struct stat *buf)

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE

10

DEPARTMENT OF CSE

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

off_t st_size; /* file size in bytes */

time_t st_atime; /* time of last access */

time_t st_mtime; /* time of last data modification */

time_t st_ctime; /* time of last file status change*/

blksize_t st_blksize; /* preferred I/O block size */

blkcnt_t st_blocks; /* number 512 byte blocks allocated */

Use the 'man -S 2 stat' command for more information on this system call.

fstat():

fstat() is like stat(), but works on a file that is specified by the fildes file descriptor. Use the 'man

-S 2 fstat' command for more information on the fstat system call.

Example

struct stat statBuf;

int err, FD;
FD = open("openclose.in", O_WRONLY | O_CREAT, S_IREAD | S_IWRITE);

if(FD == -1) /* open failed? */

exit(-1);

err = fstat(FD, &statBuf);

if(err == -1) /* fstat failed? */

exit(-1);

printf("The number of blocks = %d\n", statBuf.st_blocks);

#include < sys/types.h>

#include < sys/stat.h>

int fstat(int fildes, struct stat *buf)

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE

11

DEPARTMENT OF CSE

perror()

In most cases, if a system call or library function fails, it returns a value of -1 and assigns a value

to an external variable called errno. This value indicates where the actual problem occurred.

It is a good programming habit to examine the return value from a system call or library function

to determine if something went wrong. If there was a failure, the program should do something

such as display a short error message and exit (terminate) the program. The library function

perror can be used to produce an error message.

The following is an example of using perror to provide some error checking:

//Modified from page 7 of Interprocess Communication in Unix by John

//Shapely Gray

//checking errno and using perror

#include <cstdio>

#include <unistd.h>

#include <cstdlib>

#include <errno.h> //must use for perror

using namespace std;

//extern int errno; //in linux, don't seem to need this

int main (int argc, char *argv[])

{

int n_char=0;

char buffer[10];

//Initially n_char is set to 0 -- errno is 0 by default

printf("n_char = %d \t errno = %d\n", n_char, errno);

//Display a prompt to stdout

n_char=write(1, "Enter a word ", 14);

//Use the read system call to obtain 10 characters from stdin

n_char=read(0, buffer, 10);

printf("\nn_char = %d \t errno = %d\n", n_char, errno);

//If read has failed

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE

12

DEPARTMENT OF CSE

This is what the program will do if you run it and type in the word "hello":

If you want it to display a error message, change the file number for the read system call to 3 (a

file number that we haven't opened)

File permissions –chmod(),fchmod()

Name

chmod - change mode of a file

Synopsis

#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

int fchmod(int fd, mode_t mode);

Description

These system calls change the permissions of a file. They differ only in how the file is specified:

if (n_char==-1)

{

perror(argv[0]);

exit (1);

}

//Display the characters read

n_char=write(1,buffer,n_char);

return 0;

}

% a.out
n_char = 0 errno = 0

Enter a word hello

n_char = 6
hello

errno = 0

% a.out

n_char = 0 errno = 0

Enter a word

n_char = -1 errno = 9

a.out: Bad file descriptor

http://linux.die.net/include/sys/stat.h

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE

13

DEPARTMENT OF CSE

chmod() changes the permissions of the file specified whose pathname is given in path, which is

dereferenced if it is a symbolic link.

fchmod() changes the permissions of the file referred to by the open file descriptor fd.

The new file permissions are specified in mode, which is a bit mask created by ORing together

zero or more of the following:

S_ISUID (04000)

set-user-ID (set process effective user ID on execve(2))

S_ISGID (02000)

set-group-ID (set process effective group ID on execve(2); mandatory locking, as described in

fcntl(2); take a new file's group from parent directory, as described in chown(2) and

mkdir(2))

S_ISVTX (01000)sticky bit (restricted deletion flag, as described in unlink(2))

S_IRUSR (00400)read by owner

S_IWUSR (00200)write by owner

S_IXUSR (00100)execute/search by owner ("search" applies for directories, and means that

entries within the directory can be accessed)

S_IRGRP (00040)read by group

S_IWGRP (00020)write by group

S_IXGRP (00010)execute/search by group

S_IROTH (00004)read by others

S_IWOTH (00002)write by others

S_IXOTH (00001)execute/search by others

Return Value

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

File ownership –chown, lchown, fchown

Name

chown, fchown, lchown - change ownership of a file

Synopsis

#include <unistd.h>

int chown(const char *path, uid_t owner, gid_tgroup);

int fchown(int fd, uid_t owner, gid_t group);

int lchown(const char *path, uid_t owner, gid_tgroup);

Description

These system calls change the owner and group of a file. They differ only in how the file is

specified:

http://linux.die.net/man/2/execve
http://linux.die.net/man/2/execve
http://linux.die.net/man/2/fcntl
http://linux.die.net/man/2/chown
http://linux.die.net/man/2/mkdir
http://linux.die.net/man/2/unlink
http://linux.die.net/include/unistd.h

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE

14

DEPARTMENT OF CSE

chown() changes the ownership of the file specified by path, which is dereferenced if it is a

symbolic link.

fchown() changes the ownership of the file referred to by the open file descriptor fd.

lchown() is like chown(), but does not dereference symbolic links.

Only a privileged process (Linux: one with the CAP_CHOWN capability) may change the owner

of a file. The owner of a file may change the group of the file to any group of which that owner is

a member. A privileged process (Linux: withCAP_CHOWN) may change the group arbitrarily.

If the owner or group is specified as -1, then that ID is not changed.

When the owner or group of an executable file are changed by an unprivileged user the

S_ISUID and S_ISGID mode bits are cleared. POSIX does not specify whether this also should

happen when root does the chown(); the Linux behavior depends on the kernel version. In case of

a non-group-executable file (i.e., one for which the S_IXGRP bit is not set) theS_ISGID bit

indicates mandatory locking, and is not cleared by a chown().

Return Value

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

Links –soft links and hard links –symlink, link, unlink

Name

link - make a new name for a file

Synopsis

#include <unistd.h>

int link(const char *oldpath, const char *newpath);

Description

link() creates a new link (also known as a hard link) to an existing file.

If newpath exists it will not be overwritten.

This new name may be used exactly as the old one for any operation; both names refer to the same

file (and so have the same permissions and ownership) and it is impossible to tell which name was

the "original".

Return Value

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

Name

symlink - make a symbolic link to a file

Synopsis

#include <unistd.h>

int symlink(const char *path1, const char *path2);

http://linux.die.net/include/unistd.h
http://linux.die.net/include/unistd.h

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE

15

DEPARTMENT OF CSE

Description

The symlink() function shall create a symbolic link called path2 that contains the string pointed to

by path1(path2 is the name of the symbolic link created, path1is the string contained in the

symbolic link).

The string pointed to by path1 shall be treated only as a character string and shall not be validated

as a pathname.

If the symlink() function fails for any reason other than [EIO], any file named by path2 shall be

unaffected.

Return Value

Upon successful completion, symlink() shall return 0; otherwise, it shall return -1 and set

errno to indicate the error.

Name

unlink - delete a name and possibly the file it refers to

Synopsis

#include <unistd.h>

int unlink(const char *pathname);

Description

unlink() deletes a name from the file system. If that name was the last link to a file and no processes

have the file open the file is deleted and the space it was using is made available for reuse.

If the name was the last link to a file but any processes still have the file open the file will remain

in existence until the last file descriptor referring to it is closed.

If the name referred to a symbolic link the link is removed.

If the name referred to a socket, fifo or device the name for it is removed but processes which

have the object open may continue to use it.

Return Value

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

Directories –Creating, removing and changing Directories –mkdir,

rmdir,chdir,obtaining current working directory –getcwd

Name

mkdir - create a directory

Synopsis

#include <sys/stat.h>#include <sys/types.h>
int mkdir(const char *pathname, mode_t mode);

Description

mkdir() attempts to create a directory namedpathname.
The argument mode specifies the permissions to use. It is modified by the process's umask in the

usual way: the permissions of the created directory are (mode & ~umask & 0777). Other mode bits

of the created directory depend on the operating system. For Linux, see below.

The newly created directory will be owned by the effective user ID of the process. If the directory

containing the file has the set-group-ID bit set, or if the file system is mounted with

http://linux.die.net/include/unistd.h
http://linux.die.net/include/sys/stat.h
http://linux.die.net/include/sys/types.h

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE

16

DEPARTMENT OF CSE

BSD group semantics (mount -o bsdgroups or, synonymously mount -o grpid), the new directory

will inherit the group ownership from its parent; otherwise it will be owned by the effective

group ID of the process.

If the parent directory has the set-group-ID bit set then so will the newly created directory.

Return Value

mkdir() returns zero on success, or -1 if an error occurred (in which case, errno is set

appropriately).

Name

rmdir - delete a directory

Synopsis

#include <unistd.h>

int rmdir(const char *pathname);

Description

rmdir() deletes a directory, which must be empty.

Return Value

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

Name

chdir, fchdir - change working directory

Synopsis

#include <unistd.h>

int chdir(const char *path);

int fchdir(int fd);

Description

chdir() changes the current working directory of the calling process to the directory specified

in path.

fchdir() is identical to chdir(); the only difference is that the directory is given as an open file

descriptor.

Return Value

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

Name

getcwd, getwd, get_current_dir_name - get current working directory

Synopsis

#include <unistd.h>

char *getcwd(char *buf, size_t size);

char *getwd(char *buf);

char *get_current_dir_name(void);

Description

These functions return a null-terminated string containing an absolute pathname that is the current

working directory of the calling process. The pathname is returned as the function result and via

the argumentbuf, if present.

The getcwd() function copies an absolute pathname of the current working directory to the array

pointed to bybuf, which is of length size.

http://linux.die.net/include/unistd.h
http://linux.die.net/include/unistd.h
http://linux.die.net/include/unistd.h

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE

17

DEPARTMENT OF CSE

If the length of the absolute pathname of the current working directory, including the terminating

null byte, exceeds size bytes, NULL is returned, and errno is set to ERANGE; an application

should check for this error, and allocate a larger buffer if necessary.

As an extension to the POSIX.1-2001 standard, Linux (libc4, libc5, glibc) getcwd() allocates the

buffer dynamically using malloc(3) if buf is NULL. In this case, the allocated buffer has the length

size unless size is zero, when buf is allocated as big as necessary. The caller should free(3) the

returned buffer.

get_current_dir_name() will malloc(3) an array big enough to hold the absolute pathname of the

current working directory. If the environment variable PWD is set, and its value is correct, then

that value will be returned. The caller should free(3) the returned buffer.

getwd() does not malloc(3) any memory. The buf argument should be a pointer to an array at least

PATH_MAX bytes long. If the length of the absolute pathname of the current working directory,

including the terminating null byte, exceedsPATH_MAX bytes, NULL is returned, and errno is

set to ENAMETOOLONG. (Note that on some systems, PATH_MAX may not be a compile-

time constant; furthermore, its value may depend on the file system, see pathconf(3).) For

portability and security reasons, use of getwd() is deprecated.

Return Value

On success, these functions return a pointer to a string containing the pathname of the current

working directory. In the casegetcwd() and getwd() this is the same value as buf.

On failure, these functions return NULL, and errno is set to indicate the error. The contents of the

array pointed to by buf are undefined on error.

Directory contents, Scanning Directories- opendir, readdir, closedir,

rewinddir functions.

Name

opendir, fdopendir - open a directory

Synopsis

#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

DIR *fdopendir(int fd);

Description

The opendir() function opens a directory stream corresponding to the directory name, and returns

a pointer to the directory stream. The stream is positioned at the first entry in the directory.

The fdopendir() function is like opendir(), but returns a directory stream for the directory referred

to by the open file descriptor fd. After a successful call tofdopendir(), fd is used internally by the

implementation, and should not otherwise be used by the application.

Return Value

The opendir() and fdopendir() functions return a pointer to the directory stream. On error, NULL

is returned, and errno is set appropriately.

http://linux.die.net/man/3/malloc
http://linux.die.net/man/3/free
http://linux.die.net/man/3/malloc
http://linux.die.net/man/3/free
http://linux.die.net/man/3/malloc
http://linux.die.net/man/3/pathconf
http://linux.die.net/include/sys/types.h
http://linux.die.net/include/dirent.h

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE

18

DEPARTMENT OF CSE

Name

readdir, readdir_r - read a directory

Synopsis

#include <dirent.h>

struct dirent *readdir(DIR *dirp);

int readdir_r(DIR *dirp, struct dirent *entry, struct dirent **result);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

readdir_r():

_POSIX_C_SOURCE >= 1 || _XOPEN_SOURCE || _BSD_SOURCE ||

_SVID_SOURCE || _POSIX_SOURCE

Description

The readdir() function returns a pointer to a dirent structure representing the next directory entry

in the directory stream pointed to by dirp. It returns NULL on reaching the end of the directory

stream or if an error occurred.

On Linux, the dirent structure is defined as follows:

struct dirent {

ino_t d_ino; /* inode number */

off_t d_off; /* offset to the next dirent */

unsigned short d_reclen; /* length of this record */

unsigned char d_type; /* type of file; not supported

by all file system types */

char d_name[256]; /* filename */

};

The only fields in the dirent structure that are mandated by POSIX.1 are: d_name[], of unspecified

size, with at mostNAME_MAX characters preceding the terminating null byte; and (as an XSI

extension) d_ino. The other fields are unstandardized, and not present on all systems; see NOTES

below for some further details.

The data returned by readdir() may be overwritten by subsequent calls to readdir() for the same

directory stream.

The readdir_r() function is a reentrant version of readdir(). It reads the next directory entry from

the directory stream dirp, and returns it in the caller-allocated buffer pointed to by entry. (See

NOTES for information on allocating this buffer.) A pointer to the returned item is placed in

*result; if the end of the directory stream was encountered, then NULL is instead returned in

*result.

Return Value

On success, readdir() returns a pointer to a direntstructure. (This structure may be statically

allocated; do not attempt to free(3) it.) If the end of the directory stream is reached, NULL is

returned and errno is not changed. If an error occurs, NULL is returned and errnois set

appropriately.

The readdir_r() function returns 0 on success. On error, it returns a positive error number (listed

under ERRORS). If the end of the directory stream is reached, readdir_r() returns 0, and returns

NULL in*result.

http://linux.die.net/include/dirent.h
http://linux.die.net/man/7/feature_test_macros
http://linux.die.net/man/3/free

Linux Programming UNIT-II

CMR ENGINEERING COLLEGE

19

DEPARTMENT OF CSE

Name

closedir - close a directory

Synopsis

#include <sys/types.h>

#include <dirent.h>

int closedir(DIR *dirp);

Description

The closedir() function closes the directory stream associated with dirp. A successful call

to closedir() also closes the underlying file descriptor associated with dirp. The directory stream

descriptor dirp is not available after this call.

Return Value

The closedir() function returns 0 on success. On error, -1 is returned, and errno is set appropriately.

Name

rewinddir - reset directory stream

Synopsis

#include <sys/types.h>

#include <dirent.h>

void rewinddir(DIR *dirp);

Description

The rewinddir() function resets the position of the directory stream dirp to the beginning of the

directory.

Return Value

The rewinddir() function returns no value.

http://linux.die.net/include/sys/types.h
http://linux.die.net/include/dirent.h
http://linux.die.net/include/sys/types.h
http://linux.die.net/include/dirent.h

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 1

Syllabus

UNIT III

Process – Process concept, Layout of a C program in main memory, Process environment –

environment list, environment variables, getenv, setenv, kernel support for process, process

identification, process control –process creation , replacing a process image, waiting for a process,

process termination, zombie process, orphan process, system calls interface for process

management –fork, vfork, exit, wait, waitpid, exec family, process Groups, Sessions and

Controlling Terminal, Differences between threads and processes. Signals: -Introduction to

signals, signal generation and handling, kernel support for signals, signal function, unreliable

signals, reliable signals, kill, raise, alarm, pause, abort, sleep functions.

Process Concept

 A process is an instance of a program in execution.
 Batch systems work in terms of "jobs". Many modern process concepts are still

expressed in terms of jobs, (e.g. job scheduling), and the two terms are often

used interchangeably.
The Process

 Process memory is divided into four sections as shown in Figure 3.1 below:
o The text section comprises the compiled program code, read in from non-

volatile storage when the program is launched.

o The data section stores global and static variables, allocated and initialized

prior to executing main.

o The heap is used for dynamic memory allocation, and is managed via calls

to new, delete, malloc, free, etc.

o The stack is used for local variables. Space on the stack is reserved for

local variables when they are declared (at function entrance or elsewhere,

depending on the language), and the space is freed up when the variables

go out of scope. Note that the stack is also used for function return values,

and the exact mechanisms of stack management may be language specific.

o Note that the stack and the heap start at opposite ends of the process's free

space and grow towards each other. If they should ever meet, then either

a stack overflow error will occur, or else a call to new or malloc will fail

due to insufficient memory available.

 When processes are swapped out of memory and later restored, additional

information must also be stored and restored. Key among them are the program

counter and the value of all program registers.

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 2

Process State

Figure - A process in memory

 Processes may be in one of 5 states, as shown in Figure below.

o New - The process is in the stage of being created.
o Ready - The process has all the resources available that it needs to run,

but the CPU is not currently working on this process's instructions.

o Running - The CPU is working on this process's instructions.

o Waiting - The process cannot run at the moment, because it is waiting

for some resource to become available or for some event to occur. For

example the process may be waiting for keyboard input, disk access

request, inter-process messages, a timer to go off, or a child process to

finish.

o Terminated - The process has completed.

 The load average reported by the "w" command indicate the average number of

processes in the "Ready" state over the last 1, 5, and 15 minutes, i.e. processes

who have everything they need to run but cannot because the CPU is busy

doing something else.

 Some systems may have other states besides the ones listed here.

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 3

Process Control Block

Figure - Diagram of process state

For each process there is a Process Control Block, PCB, which stores the following (

types of) process-specific information, as illustrated in Figure 3.1. (Specific details

may vary from system to system.)

 Process State - Running, waiting, etc., as discussed above.

 Process ID, and parent process ID.
 CPU registers and Program Counter - These need to be saved and restored

when swapping processes in and out of the CPU.

 CPU-Scheduling information - Such as priority information and pointers to

scheduling queues.

 Memory-Management information - E.g. page tables or segment tables.

 Accounting information - user and kernel CPU time consumed, account

numbers, limits, etc.

 I/O Status information - Devices allocated, open file tables, etc.

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 4

Figure - Process control block (PCB)

Memory Layout of C Programs
A typical memory representation of C program consists of following sections.
1. Text segment

2. Initialized data segment
3. Uninitialized data segment

4. Stack
5. Heap

A typical memory layout of a running process

1. Text Segment:
A text segment , also known as a code segment or simply as text, is one of the sections of a program in an

object file or in memory, which contains executable instructions.

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 5

As a memory region, a text segment may be placed below the heap or stack in order to prevent heaps and

stack overflows from overwriting it.

Usually, the text segment is sharable so that only a single copy needs to be in memory for frequently

executed programs, such as text editors, the C compiler, the shells, and so on. Also, the text segment is

often read-only, to prevent a program from accidentally modifying its instructions.

2. Initialized Data Segment:
Initialized data segment, usually called simply the Data Segment. A data segment is a portion of virtual

address space of a program, which contains the global variables and static variables that are initialized by

the programmer.
Note that, data segment is not read-only, since the values of the variables can be altered at run time.

This segment can be further classified into initialized read-only area and initialized read-write area.

For instance the global string defined by char s[] = “hello world” in C and a C statement like int debug=1

outside the main (i.e. global) would be stored in initialized read-write area. And a global C statement like
const char* string = “hello world” makes the string literal “hello world” to be stored in initialized read- only

area and the character pointer variable string in initialized read-write area.

Ex: static int i = 10 will be stored in data segment and global int i = 10 will also be stored in data segment

3. Uninitialized Data Segment:

Uninitialized data segment, often called the “bss” segment, named after an ancient assembler operator that
stood for “block started by symbol.” Data in this segment is initialized by the kernel to arithmetic 0 before

the program starts executing

uninitialized data starts at the end of the data segment and contains all global variables and static variables
that are initialized to zero or do not have explicit initialization in source code.

For instance a variable declared static int i; would be contained in the BSS segment. For

instance a global variable declared int j; would be contained in the BSS segment.

4. Stack:

The stack area traditionally adjoined the heap area and grew the opposite direction; when the stack pointer

met the heap pointer, free memory was exhausted. (With modern large address spaces and virtual memory
techniques they may be placed almost anywhere, but they still typically grow opposite directions.)

The stack area contains the program stack, a LIFO structure, typically located in the higher parts of memory.

On the standard PC x86 computer architecture it grows toward address zero; on some other architectures it
grows the opposite direction. A “stack pointer” register tracks the top of the stack; it is adjusted each time

a value is “pushed” onto the stack. The set of values pushed for one function call is termed a “stack frame”;

A stack frame consists at minimum of a return address.

Stack, where automatic variables are stored, along with information that is saved each time a function is
called. Each time a function is called, the address of where to return to and certain information about the

caller’s environment, such as some of the machine registers, are saved on the stack. The newly called

function then allocates room on the stack for its automatic and temporary variables. This is how recursive
functions in C can work. Each time a recursive function calls itself, a new stack frame is used, so one set

of variables doesn’t interfere with the variables from another instance of the function.

5. Heap:

Heap is the segment where dynamic memory allocation usually takes place.
The heap area begins at the end of the BSS segment and grows to larger addresses from there.The Heap

area is managed by malloc, realloc, and free, which may use the brk and sbrk system calls to adjust its
size (note that the use of brk/sbrk and a single “heap area” is not required to fulfill the contract of

malloc/realloc/free; they may also be implemented using mmap to reserve potentially non-contiguous

regions of virtual memory into the process’ virtual address space). The Heap area is shared by all shared
libraries and dynamically loaded modules in a process.

Examples.
The size(1) command reports the sizes (in bytes) of the text, data, and bss segments. (for more details

please refer man page of size(1))

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 6

1. Check the following simple C program

#include<stdio.h>

Int main(void)

{
Return 0;
}

OUTPUT:

Process environment –environment list, environment variables,

getenv, setenv:
 A set of name-value pairs associated with a process

 Keys and values are strings

 Passed to children processes

 Cannot be passed back up

 Common examples: – PATH: Where to search for programs

Environment Variables

Variable Description

PATH
Indicates search path for commands. It is a colon-separated list of
directories in which the shell looks for commands.

PWD Indicates the current working directory as set by the cd command.

RANDOM
Generates a random integer between 0 and 32,767 each time it is
referenced.

$HOME Absolute pathname of your home directory

$PATH A list of directories to search for

$MAIL Absolute pathname to mailbox

$USER Your user id

$SHELL Absolute pathname of login shell

$TERM Type of your terminal

$PS1 Prompt

NAME

getenv, secure_getenv - get an environment variable

SYNOPSIS

#include <stdlib.h>

char *getenv(const char *name);

[narendra@CentOS]$ gcc memory-layout.c -o memory-layout

[narendra@CentOS]$ size memory-layout

text data bss dec hex filename

960 248 8 1216 4c0 memory-layout

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 7

char *secure_getenv(const char *name);

DESCRIPTION
The getenv() function searches the environment list to find the environment

variable name, and returns a pointer to the corresponding value string.

The GNU-specific secure_getenv() function is just like getenv() except that it

returns NULL in cases where "secure execution" is required. Secure execution is

required if one of the following conditions was true when the program run by the

calling process was loaded:

RETURN VALUE

The getenv() function returns a pointer to the value in the environment, or NULL if

there is no match.

NAME

setenv - change or add an environment variable

SYNOPSIS

#include <stdlib.h>

int setenv(const char *name, const char *value, int overwrite);

int unsetenv(const char *name);

DESCRIPTION

The setenv() function adds the variable name to the environment with the value

value, if name does not already exist. If name does exist in the environment, then its

value is changed to value if overwrite is nonzero; if overwrite is zero, then the value

of name is not changed (and setenv() returns a success status). This function makes

copies of the strings pointed to by name and value (by contrast with putenv(3)).The

unsetenv() function deletes the variable name from the

environment. If name does not exist in the environment, then the function

succeeds, and the environment is unchanged.

RETURN VALUE

The setenv() function returns zero on success, or -1 on error, with errno set to

indicate the cause of the error.The unsetenv() function returns zero on success, or -1

on error, with errno set to indicate the cause of the error.

Kernel support for process

http://man7.org/linux/man-pages/man3/putenv.3.html
http://man7.org/linux/man-pages/man3/errno.3.html
http://man7.org/linux/man-pages/man3/errno.3.html

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 8

Each of these processes could be responsible for a logical subset of the services offered

by the kernel. Thus one process could be responsible for scheduling, another for

managing disk I/O, a third for processing information received from other computers

and so on.

There are some advantages of supporting kernel processes:

The kernel is well-structured since kernel services are encapsulated within the processes

that provide them. This encapsulation is similar to the one provided by modules and

monitors. (Recall the Lauer and Needham paper on the duality of operating systems).

Kernel code does not have to run as part of user processes. In a system that does not

support kernel processes, all kernel code runs as part of user processes. For example

in Xinu, when a service call is made, the kernel code to service the call runs as part of

the process that made the call. In a system that supports kernel processes, the service

call would result in a message to a kernel process, which would then execute the

appropriate code. In some ways the latter approach is more `elegant'.

In a multiprocessor system kernel processes could execute concurrently.

The idea of kernel processes may seem contradictory to our discussion of the minimum

functionality provided by a kernel. If a kernel is responsible for supporting processes

and interprocess communication, how can it use these facilities itself? Here are two

solutions:

Kernel processes and communication among them may be supported by the

programming language. Charlotte, a distributed operating system developed at

Madison, uses this approach.

A portion of the kernel, which we shall call the nugget, could support kernel processes

and communication among these processes, and higher layers could be implemented as

communicating kernel processes. This approach is implemented in Sun Unix.

Should kernel processes be any different from ordinary user processes? It is important

to execute kernel code efficiently, therefore these processes should be lightweight

processes.

Process identification:

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 9

A PID (i.e., process identification number) is an identification number that is automatically

assigned to each process when it is created on a Unix-like operating system. A process is an

executing (i.e., running) instance of a program.

Process control –process creation

Process creation in UNIX

The seven-state logical process model we considered in a previous lecture can accommodate the

UNIX process model with some modifications, actually becoming a ten state model.

First, as we previously observed, UNIX executes most kernel services within a process's context,

by implementing a mechanism which separates between the two possible modes of execution of

a process. Hence our previously unique ̀ `Running'' state must actually be split in a ̀ `User Running''

state and a ``Kernel Running'' state. Moreover a process preemption mechanism is usually

implemented in the UNIX scheduler to enforce priority. This allows a process returning from a

system call (hence after having run in kernel mode) to be immediately blocked and put in the ready

processes queue instead of returning to user mode running, leaving the CPU to another process.

So it's worth considering a ``Preempted'' state as a special case of ``Blocked''. Moreover, among

exited processes there's a distinction between those which have a parent process that waits for

their completion (possibly to clean after them), and those which upon termination have an active

parent that might decide to wait for them sometime in the future (and then be immediately notified

of its children's termination) . These last processes are called ``Zombie'', while the others are

``Exited''. The difference is that the system needs to maintain an entry in the process table for a

zombie, since its parent might reference it in the future, while the entry for an exited (and waited

for) process can be discarded without further fiddling. So the much talked about ``Zombie''

processes of UNIX are nothing but entries in a system table, the system having already disposed

of all the rest of their image. This process model is depicted in fig.

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 10

Figure : UNIX process state model

All processes in UNIX are created using the fork() system call. System calls in UNIX can be

best thought of as C functions provided with the standard C library. Even if their particular

implementation is depends on the particular UNIX flavor (and on hardware, for many of them), a

C API is always provided, and is consistent among the different unices, at least in the

fundamental traits.

UNIX implements through the fork() and exec() system calls an elegant two-step mechanism for

process creation and execution. fork() is used to create the image of a process using the one of an

existing one, and exec is used to execute a program by overwriting that image with the program's

one. This separation allows to perform some interesting housekeeping actions in between, as we'll

see in the following lectures.

A call to fork() of the form:

#include <sys/types.h>

pid_t childpid;

...

childpid = fork(); /* child's pid in the parent, 0 in the child */

...

creates (if it succeeds) a new process, which a child of the caller's, and is an exact copy of of the

(parent) caller itself. By exact copy we mean that it's image is a physical bitwise copy of the

parent's (in principle, they do not share the image in memory: though there can be exceptions to

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 11

this rule, we can always thing of the two images as being stored in two separate and protected

address spaces in memory, hence a manipulation of the parent's variables won't affect the child's

copies, and vice versa). The only visible differences are in the PCB, and the most relevant (for

now) of them are the following:

 The two processes obviously have two different process id.s. (pid). In a C program process

id.s are conveniently represented by variables of pid_t type, the type being defined in the

sys/types.h header.

 In UNIX the PCB of a process contains the id of the process's parent, hence the child's PCB

will contain as parent id (ppid) the pid of the process that called fork(), while the caller will

have as ppid the pid of the process that spawned it.

 The child process has its own copy of the parent's file descriptors. These descriptors

reference the same under-lying objects, so that files are shared between the child and the

parent. This makes sense, since other processes might access those files as well, and having

them already open in the child is a time-saver.

The fork() call returns in both the parent and the child, and both resume their execution from the

statement immediately following the call. One usually wants that parent and child behave

differently, and the way to distinguish between them in the program's source code is to test the

value returned by fork(). This value is 0 in the child, and the child's pid in the parent. Since

fork() returns -1 in case the child spawning fails, a catch-all C code fragment to separate behaviours

may look like the following:

#include <sys/types.h>

#include <errno.h>

#include <stdio.h>

...

pid_t childpid;

...

childpid=fork();

switch(childpid)

{

case -1:

fprintf(stderr,"ERROR: %s\n", sys_errlist[errno]);

exit(1);

break;

case 0:

/* Child's code goes here */

break;

default:

/* Parent's code goes here */

break;

}

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 12

The array of strings char *sys_errlist[] and the global integer variable int errno are defined in the

errno.h header. The former contains a list of system error messages, and the latter is set to index

the appropriate message whenever an error occurs. For each system call several possible error

conditions are defined. Each of them is associated to an integer constant - defined via a

#define directive in one system header file - whose value is exactly the one that errno takes when

an error occurs.

The vfork() system call

A BSD variant of fork(), now supported by SVR4.

Similar to fork(); however, is used to exec a new program only.

Child running in the parent address space until it calls exec()/exit().

Not fully copying the address space of the parent into the child.

vfork() guarantees that the child runs first until it calls exec()/exit().

Deadlock is possible if the child needs information from the parent.

waiting for a process

wait()

A parent process usually needs to synchronize its actions by waiting until the child

process has either stopped or terminated its actions.

The wait() system call allows the parent process to suspend its activities until one of

these actions has occurred.

The wait() system call accepts a single argument, which is a pointer to an integer and

returns a value defined as type pid_t.

If the calling process does not have any child associated with it, wait will return

immediately with a value of -1.

If any child processes are still active, the calling process will suspend its activity until

a child process terminates.

(see the programs in Interprocess Communication in Unix pg 73 and 74)

Example of wait()

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

int status;

pid_t fork_return;

http://linux.ctyme.com/man/man3117.htm

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 13

A few notes on this program:

 wait(&status) causes the parent to sleep until the child process is finished

execution

 details of how the child stopped are returned via the status variable to the

parent. Several macros are available to interpret the information. Two useful

ones are:

o WIFEXITED evaluates as true, or 0, if the process ended normally with an

exit or return call.

o WEXITSTATUS if a process ended normally you can get the value that was

returned with this macro.

Consult a man file for more.

exec*()

"The exec family of functions replaces the current process image with a new process

image." (man pages)

Commonly a process generates a child process because it would like to transform the

child process by changing the program code the child process is executing.

fork_return = fork();

if (fork_return == 0) /* child process */

{

printf("\n I'm the child!");

exit(0);

}

else /* parent process */

{
wait(&status);

printf("\n I'm the parent!");

if (WIFEXITED(status))

printf("\n Child returned: %d\n", WEXITSTATUS(status));

}

#include <unistd.h>

extern char **environ;

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg , ..., char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 14

The text, data and stack segment of the process are replaced and only the u (user) area

of the process remains the same.

If successful, the exec system calls do not return to the invoking program as the calling

image is lost.

It is possible for a user at the command line to issue an exec system call, but it takes

over the current shell and terminates the shell.

The versions of exec are:

 execl

 execv

 execle

 execve

 execlp

 execvp

The naming convention: exec*

 'l' indicates a list arrangement (a series of null terminated arguments)

 'v' indicate the array or vector arrangement (like the argv structure).

 'e' indicates the programmer will construct (in the array/vector format) and pass

their own environment variable list

 'p' indicates the current PATH string should be used when the system searches

for executable files.

NOTE:

 In the four system calls where the PATH string is not used (execl, execv,

execle, and execve) the path to the program to be executed must be fully

specified.

exec system call functionality

Library Call Name Argument List Pass Current Environment Variables Search PATH automatic?

execl list yes no

% exec command [arguments]

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 15

execv array yes no

execle list no no

execve array no no

execlp list yes yes

execvp array yes yes

execlp

 this system call is used when the number of arguments to be passed to the

program to be executed is known in advance

execvp

 this system call is used when the numbers of arguments for the program to be

executed is dynamic

Things to remember about exec*:

 this system call simply replaces the current process with a new program -- the

pid does not change

 the exec() is issued by the calling process and what is exec'ed is referred to as

the new program -- not the new process since no new process is created

 it is important to realize that control is not passed back to the calling process

unless an error occurred with the exec() call

 in the case of an error, the exec() returns a value back to the calling process

 if no error occurs, the calling process is lost

A few more Examples of valid exec commands:

/* using execvp to execute the contents of argv */

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

int main(int argc, char *argv[])
{

execvp(argv[1], &argv[1]);

perror("exec failure");

exit(1);

}

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 16

getpid()

getpid() returns the process id of the current process. The process ID is a unique

positive integer identification number given to the process when it begins executing.

getppid() returns the process id of the parent of the current process. The parent process

forked the current child process.

getpgrp()

Every process belongs to a process group that is identified by an integer process group

ID value.When a process generates a child process, the operating system will

automatically create a process group.The initial parent process is known as the

process leader.getpgrp() will obtain the process group id.

Process termination
Normal termination

Return from main().

Calling exit()

Calling _exit().

Abnormal termination

Calling abort().

Terminated by a signal.

execl("/bin/date","",NULL); // since the second argument is the program name,

// it may be null

execl("/bin/date","date",NULL);

execlp("date","date", NULL); //uses the PATH to find date, try: %echo $PATH

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

pid_t getppid(void);

#include <unistd.h>

pid_t getpgrp(void);

http://www.cse.fau.edu/~roy/cop4604.02s/notes/exit.html
http://www.cse.fau.edu/~roy/cop4604.02s/notes/_exit.html
http://linux.ctyme.com/man/man0003.htm

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 17

The exit() system call

Performs a standard I/O cleanup

Executes all registered exit handlers.

Flushes all C/C++ output buffers.

Closes all open streams.

Terminates the calling process.

The _exit() system call

Terminates the calling process without performing some cleanup.

Zombie process:
On Unix and Unix-like computer operating systems, a zombie process or defunct process is a

process that has completed execution but still has an entry in the process table. This entry is

still needed to allow the parent process to read its child’s exit status. The term zombie process

derives from the common definition of zombie — an undead person. In the term’s metaphor, the

child process has “died” but has not yet been “reaped”. Also, unlike normal processes, the kill

command has no effect on a zombie process.

When a process ends, all of the memory and resources associated with it are deallocated so they

can be used by other processes. However, the process’s entry in the process table remains. The

parent can read the child’s exit status by executing the wait system call, whereupon the zombie is

removed. The wait call may be executed in sequential code, but it is commonly executed in a

handler for theSIGCHLD signal, which the parent receives whenever a child has died.

After the zombie is removed, its process identifier (PID) and entry in the process table can then be

reused. However, if a parent fails to call wait, the zombie will be left in the process table. In some

situations this may be desirable, for example if the parent creates another child process it ensures

that it will not be allocated the same PID. On modern UNIX-like systems (that comply with SUSv3

specification in this respect), the following special case applies: if the parent explicitly ignores

SIGCHLD by setting its handler toSIG_IGN (rather than simply ignoring the signal by default) or

has the SA_NOCLDWAIT flag set, all child exit status information will be discarded and no

zombie processes will be left

A zombie process is not the same as an orphan process. An orphan process is a process that is

still executing, but whose parent has died. They do not become zombie processes; instead, they are

adopted by init (process ID 1), which waits on its children.

Orphan Process
An orphan process is a computer process whose parent process has finished or terminated,

though it remains running itself.

In a Unix-like operating system any orphaned process will be immediately adopted by the special

init system process. This operation is called re-parenting and occurs automatically. Even though

technically the process has the init process as its parent, it is still called an orphan process since the

process that originally created it no longer exists.

http://en.wikipedia.org/wiki/Orphan_process

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 18

A process can be orphaned unintentionally, such as when the parent process terminates or crashes.

The process group mechanism in most Unix-like operation systems can be used to help protect

against accidental orphaning, where in coordination with the user’s shell will try to terminate all

the child processes with the SIGHUPprocess signal, rather than letting them continue to run as

orphans.

A process may also be intentionally orphaned so that it becomes detached from the user’s session

and left running in the background; usually to allow a long-running job to complete without further

user attention, or to start an indefinitely running service. Under Unix, the latter kinds of processes

are typically called daemon processes. The Unix nohup command is one means to accomplish this.

Differences between threads and processes:

Signals: -Introduction to signals:

Signals are a limited form of inter-process communication used in Unix, Unix-like, and other

POSIX-compliant operating systems. A signal is an asynchronous notification sent to a process

or to a specific thread within the same process in order to notify it of an event that occurred. Signals

represent a very limited form of interprocess communication. They are easy to use (hard to use

well) but they communicate very little information. In addition the sender (if it is a process) and

the receiver must belong to the same user id, or the sender must be the superuser. Signals are sent

explicitly to a process from another process using the kill function. Signals can indicate some

significant terminal action, such as Hang Up. Alternatively, signals are sent to a process from the

hardware (to indicate things like illegal operator, or illegal address) through mediation of the OS.

Beware that signals could also be caused by an internet connection, for example a TCP/IP OOB

(out of band) message could cause the SIGURG signal. There are only a

1. Threads are easier to create than processes since they don't require a separate address space.

2. Multithreading requires careful programming since threads share data strucures that should only

be modified by one thread at a time. Unlike threads, processes don't share the same

address space.

3. Threads are considered lightweight because they use far less resources than processes.

4. Processes are independent of each other. Threads, since they share the same address space are

interdependent, so caution must be taken so that different threads don't step on each other. This is

really another way of stating #2 above.

5. A process can consist of multiple threads.

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 19

few possible signals (usually 32 - wait: I just checked on my GNU/Linux 2.6.17-1.2142_FC4 and

I have now 64 possible signals!)). A process can specify with a mask (1 bit per signal) what it

wants to be done with a signal directed to it, whether to block it or to deliver it. Blocked

signals remain pending, i.e. we may ask to have them delivered later. A process specifies with the

signal function (obsolete) or with the sigaction function what it wants it to be done when signals

are delivered to it. When a signal is delivered to a process (i.e. it is not blocked), an action takes

place. For each signal there is a default action specific to that signal. Or for a signal an action (a

handler) can be specified by the program.

There are three actions that can take place when a signal is delivered to a process:

 it can be ignored; or

 the process can be terminated (with or without core dumping); or

 a handler function can be called. This function receives as its only argument the number

identifying the signal it is handling.

The association of a signal to an action remains in place until it is explicitly modified with a signal

or sigaction call. [This is the behavior at least in modern Unix systems. In older Unix after each

signal handling occurrence the handler reverted to the default handler. This created a race condition

if we were intending to re-establish a non default handler. For this reason old Unix was said

 to be withunrelieable signals.]

In writing a handler function one has to be conscious that it is executed as an asynchronous

action during the execution of a process (well, there are also synchronous signals like SIGBUS

due to the use of an illegal address). The handler code may execute a routine that was interrupted

by the signal, or access variables that were being used in the process. Thus one has to be careful

about the code that is executed in the handler and in the variables it accesses. [You may want to

examine in C or C++ the use of the attribute volatile.] During execution of the handler associated

to a signal, that specific signal is automatically blocked thus preventing a race condition. But

beware that if the same handler is specified for two different signals A and B, then during the

execution of the handler for A, a B signal will not be blocked and the handler will be reentered.

After the handler function is completed, execution resumes at the statement being executed when

the signal was received. If the signal occurred while the process was executing a system call, things

become more comples. The system call may be terminated without completing and return the value

EINTR. In some systems it is possible to specify that interrupted system calls be automatically

restarted by using the flag SA_RESTART. In other system SA_RESTART is the default.

The following diagram describes how a signal is raised, possibly blocked before delivery, and then

handled.

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 20

We may worry that signals may be lost while pending, but that is not the case. If multiple copies

of a signal are delivered to a process while that signal is blocked, normally only a single copy of

that signal will be delivered to the process when the signal becomes unblocked.

Here are some of the possible signals, with the number associated to them, and their default

handling.

SIGNAL ID DEFAULT DESCRIPTION

===

SIGHUP 1 Termin. Hang up on controlling terminal

SIGINT 2 Termin. Interrupt. Generated when we enter CNRTL-C

and it is delivered to all processes/threads

associated to the current terminal. If

generated with kill, it is delivered to only

one process/thread.

SIGQUIT 3 Core Generated when at terminal we enter CNRTL-\

SIGILL 4 Core Generated when we executed an illegal instruction

SIGTRAP 5 Core Trace trap (not reset when caught)

SIGABRT 6 Core Generated by the abort function

SIGFPE 8 Core Floating Point error

SIGKILL 9 Termin. Termination (can't catch, block, ignore)

SIGBUS 10 Core Generated in case of hardware fault

SIGSEGV 11 Core Generated in case of illegal address

SIGSYS 12 Core Generated when we use a bad argument in a

system service call

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 21

SIGPIPE 13 Termin. Generated when writing to a pipe or a socket

while no process is reading at other end

SIGALRM 14 Termin. Generated by clock when alarm expires

SIGTERM 15 Termin. Software termination signal

SIGURG 16 Ignore Urgent condition on IO channel

SIGCHLD 20 Ignore A child process has terminated or stopped

SIGTTIN 21 Stop Generated when a backgorund process reads

from terminal

SIGTTOUT 22 Stop Generated when a background process writes

to terminal

SIGXCPU 24 Discard CPU time has expired

SIGUSR1 30 Termin. User defiled signal 1
SIGUSR2 31 Termin. User defined signal 2

One can see the effect of these signal by executing in the shell the kill command. For example

% kill -TERM pidid

You may see what are the defined signals with the shell command

% kill -l

It is easy to see that some signals occur synchronously (i.e. they are directly related to the

instruction being executed) with the executing program (for example SIGSEGV), others

asynchronously (for example SIGINT), and others are explicitly directed from one process to

another (for example SIGKILL).

Handling and Generating Signals

Now that we have a decent understanding of signals and how they communicate information to a process, let's move

on to investigate how we can write program that take some action based on a signal. This is described as signal

handling, a program that handles a signal, either by ignoring it or taking some action when the signal is delivered.

We will also explore how signals can be sent from one program to another, again, we'll use a kill for that.

Hello world of Signal Handling

The primary system call for signal handling is signal(), which given a signal and function, will execute the function

whenever the signal is delivered. This function is called the signal handler because it handles the signal. The

signal() function has a strange declaration:

int signal(int signum, void (*handler)(int))

That is, signal takes two arguments: the first argument is the signal number, such as SIGSTOP or SIGINT, and the

second is a reference to a handler function whose first argument is an int and returns void. It's probably best to explore

signal() through an example, and hello world program is where we always start.

#include <stdlib.h>

#include <stdio.h>

#include <signal.h> /*for signal() and raise()*/

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 22

void hello(int signum){
printf("Hello World!\n");

}

int main(){

//execute hello() when receiving signal SIGUSR1
signal(SIGUSR1, hello);

//send SIGUSR1 to the calling process
raise(SIGUSR1);

}

The above program first establishes a signal handler for the user signal SIGUSR1. The signal handling function

hello() does as expected: prints "Hello World!" to stdout. The program then sends itself the SIGUSR1

signal, which is accomplished via raise(), and the result of executing the program is the beautiful phrase:

#> ./hello_signal
Hello World!

Asynchronous Execution

Some key points to take away from the hello program is that the second argument to signal() is a function pointer, a

reference to a function to call. This tells the operating system that whenever this signal is sent to this process, run this

function as the signal handler.

Also, the execution of the signal handler is asynchronous, which means the current state of the program will be paused

while the signal handler executes, and then execution will resume from the pause point, much like context switching.

Let's look at another example hello world program:

void hello(int signum){
printf("Hello World!\n");

}

int main(){

//Handle SIGINT with hello

signal(SIGINT, hello);

//loop forever!

while(1);

}

The above program will set a signal handler for SIGINT the signal that is generated when you type Ctrl-C. The

question is, when we execute this program, what will happen when we type Ctrl-C?
To start, let's consider the execution of the program. It will register the signal handler and then will enter the infinite

loop. When we hit Ctrl-C, we can all agree that the signal handler hello() should execute and "Hello World!" prints to

the screen, but the program was in an infinite loop. In order to print "Hello World!" it must have been the case that

it broke the loop to execute the signal handler, right? So it should exit the loop as well as the program. Let's see:

#> ./hello_loop
^CHello World!

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 23

^CHello World!
^CHello World!

^CHello World!

^CHello World!
^CHello World!

^CHello World!
^\Quit: 3

As the output indicates, every time we issued Ctrl-C "Hello World!" prints, but the program returns to the infiinite

loop. It is only after issue a SIGQUITsignal with Ctrl-\ did the program actually exit.

While the interoperation that the loop would exit is reasonable, it doesn't consider the primary reason for signal

handling, that is, asynchronous event handling. That means the signal handler acts out of the standard flow of the

control of the program; in fact, the whole program is saved within a context, and a new context is created just for the
signal handler to execute in. If you think about it some more, you realize that this is pretty cool, and also a totally new

way to view programming.

Inter Process Communication

Signals are also a key means for inter-process communication. One process can send a signal to another indicating

that an action should be taken. To send a signal to a particular process, we use the kill() system call. The function

declaration is below.

int kill(pid_t pid, int signum);

Much like the command line version, kill() takes a process identifier and a signal, in this case the signal value as

an int, but the value is #defined so you can use the name. Let's see it in use.

void hello(){

printf("Hello World!\n");
}

int main(){

pid_t cpid;

pid_t ppid;

//set handler for SIGUSR1 to hello()
signal(SIGUSR1, hello);

if ((cpid = fork()) == 0){

/*CHILD*/

//get parent's pid
ppid = getppid();

//send SIGUSR1 signal to parrent

kill(ppid, SIGUSR1);
exit(0);

}else{
/*PARENT*/

//just wait for child to terminate
wait(NULL);

}

}

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 24

In this program, first a signal handler is established for SIGUSR1, the hello() function. After the fork, the parent calls

wait() and the child will communicate to the parent by "killing" it with the SIGUSR1 signal. The result is that the

handler is invoked in the parent and "Hello World!" is printed to stdout from the parent.
While this is a small example, signals are integral to inter process communication. In previous lessons, we've discussed

how to communicate data between process with pipe(), signals is the way process communicate state changes and

other asynchronous events. Perhaps most relevant is state change in child processes. The SIGCHLD

signal is the signal that gets delivered to the parent when a child terminates. So far, we've been handling this signal

implicitly through wait(), but you can choose instead to handle SIGCHLD and take different actions when a child

terminates. We'll look at that in more detail in a future lesson.

Ignoring Signals

While we've so far looked at changing the actions for a set of signals using a handler. So far, our handlers have been

doing things — mostly, printing "Hello World!" — but we might just want our handler to do nothing, essentially,

ignoring the signal. That is easy enough to write in code, for example, here is a program that will ignore SIGINT by

handling the signal and do nothing:

#include <signal.h>
#include <sys/signal.h>

void nothing(int signum){ /*DO NOTHING*/ }

int main(){

signal(SIGINT, nothing);

while(1);
}

And if we run this program, we see that, yes, it Ctrl-c is ineffective and we have to use Ctrl-\ to quit the program:

>./ignore_sigint

^C^C^C^C^C^C^C^C^C^C^\Quit: 3

But, it would seem like a pain to always have to write the silly little ignore function that does nothing, and so, when

there is a need, there's a way. Thesignal.h header defines a set of actions that can be used in place of the handler:

 SIG_IGN : Ignore the signal

 SIG_DFL : Replace the current signal handler with the default handler

With these keywords, we can rewrite the program simply as:

int main(){

// using SIG_IGN

signal(SIGINT, SIG_IGN);

while(1);
}

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 25

raise was originally defined by ISO C. POSIX.1 includes it to align itself with the ISO C

standard, but POSIX.1 extends the specification of raise to deal with threads (we discuss how

threads interact with signals in Section 12.8). Since ISO C does not deal with multiple processes,

it could not define a function, such as kill, that requires a process ID argument.

The call

There are four different conditions for the pid argument to kill.

pid > 0 The signal is sent to the process whose process ID is pid.

pid == 0

The signal is sent to all processes whose process group ID equals the process group ID of the

sender and for which the sender has permission to send the signal. Note that the term all

processes excludes an implementation-defined set of system processes. For most UNIX

systems, this set of system processes includes the kernel processes and init (pid 1).

pid < 0

The signal is sent to all processes whose process group ID equals the absolute value

of pid and for which the sender has permission to send the signal. Again, the set of all

processes excludes certain system processes, as described earlier.

pid == 1

The signal is sent to all processes on the system for which the sender has permission to send

the signal. As before, the set of processes excludes certain system processes.

kill and raise Functions

The kill function sends a signal to a process or a group of processes. The raise function allows a

process to send a signal to itself.

Both return: 0 if OK, 1 on error

#include <signal.h>

int kill(pid_t pid, int signo);

int raise(int signo);

raise(signo);

is equivalent to the call

kill(getpid(), signo);

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 26

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 27

The seconds value is the number of clock seconds in the future when the signal should be

generated. Be aware that when that time occurs, the signal is generated by the kernel, but there

could be additional time before the process gets control to handle the signal, because of processor

scheduling delays.

Earlier UNIX System implementations warned that the signal could also be sent up to 1 second

early. POSIX.1 does not allow this.

Alarm and pause Functions

The alarm function allows us to set a timer that will expire at a specified time in the future. When

the timer expires, the SIGALRM signal is generated. If we ignore or don't catch this signal, its

default action is to terminate the process.

Returns: 0 or number of seconds until previously set alarm

#include <unistd.h> unsigned int alarm(unsigned int seconds);

Returns: 1 with errno set to EINTR

#include <unistd.h>

int pause(void);

There is only one of these alarm clocks per process. If, when we call alarm, a previously registered

alarm clock for the process has not yet expired, the number of seconds left for that alarm clock is

returned as the value of this function. That previously registered alarm clock is replaced by the

new value.

If a previously registered alarm clock for the process has not yet expired and if the seconds value

is 0, the previous alarm clock is canceled. The number of seconds left for that previous alarm clock

is still returned as the value of the function.

Although the default action for SIGALRM is to terminate the process, most processes that use an

alarm clock catch this signal. If the process then wants to terminate, it can perform whatever

cleanup is required before terminating. If we intend to catch SIGALRM, we need to be careful to

install its signal handler before calling alarm. If we call alarm first and are sent

SIGALRM before we can install the signal handler, our process will terminate.

The pause function suspends the calling process until a signal is caught.

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 28

1. If the caller already has an alarm set, that alarm is erased by the first call to alarm. We can

correct this by looking at the return value from the first call to alarm. If the number of seconds

until some previously set alarm is less than the argument, then we should wait only until the

previously set alarm expires. If the previously set alarm will go off after ours, then before returning

we should reset this alarm to occur at its designated time in the future.

2. We have modified the disposition for SIGALRM. If we're writing a function for others to

call, we should save the disposition when we're called and restore it when we're done. We can

correct this by saving the return value from signal and resetting the disposition before we return.

3. There is a race condition between the first call to alarm and the call to pause. On a busy

system, it's possible for the alarm to go off and the signal handler to be called before we

call pause. If that happens, the caller is suspended forever in the call to pause (assuming that some

other signal isn't caught).

The only time pause returns is if a signal handler is executed and that handler returns. In that

case,pause returns 1 with errno set to EINTR.

Example

Using alarm and pause, we can put a process to sleep for a specified amount of time. The

sleep1function in Figure 10.7 appears to do this (but it has problems, as we shall see shortly).

This function looks like the sleep function, which we describe in Section 10.19, but this simple

implementation has three problems.

Earlier implementations of sleep looked like our program, with problems 1 and 2 corrected as

described. There are two ways to correct problem 3. The first uses setjmp, which we show in the

next example.

include <signal.h>

#include <unistd.h>

static void sig_alrm(int signo) { /* nothing to do, just return to wake up the pause */ }

unsigned int sleep1(unsigned int nsecs)

{ if (signal(SIGALRM, sig_alrm) == SIG_ERR)

return(nsecs);

alarm(nsecs); /* start the timer */ pause();

/* next caught signal wakes us up */ return(alarm(0)); /* turn off timer, return unslept time */

}

Linux Programming UNIT -III

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 29

Abort & sleep functions.

NAME
abort - cause abnormal process termination

SYNOPSIS

#include <stdlib.h>

void abort(void);

DESCRIPTION

The abort() first unblocks the SIGABRT signal, and then raises that signal for the

calling process (as though raise(3) was called). This results in the abnormal termination of the

process unless the SIGABRT signal is caught and the signal handler does not return

. If the abort() function causes process termination, all open streams are closed and

flushed.If the SIGABRT signal is ignored, or caught by a handler that returns, the abort()

function will still terminate the process. It does this by restoring the default disposition for

SIGABRT and then raising the signal for a second time.

RETURN VALUE

The abort() function never returns.

Name

sleep - sleep for the specified number of seconds

Synopsis

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

Description

sleep() makes the calling thread sleep until seconds seconds have elapsed or a signal arrives

which is not ignored.

Return Value

Zero if the requested time has elapsed, or the number of seconds left to sleep, if the call was

interrupted by a signal handler.

http://man7.org/linux/man-pages/man3/raise.3.html
http://linux.die.net/include/unistd.h

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 1

Syllabus

UNIT IV

Intercrosses Communication : Introduction to IPC, IPC between processes on a single computer

system, IPC between processes on different systems pipes-creation, IPC between related processes

using named pipes, FIFOs-creation, IPC between unrelated processes using FIFOs (Named

pipes),differences between unnamed and named pipes, popen and pclose library functions. Message

Queues- Kernel support for messages, APIs for messages, client/server example. Semaphores –

Kernel support for semaphores, APIs for semaphores, file locking with semaphores.

Inter Process communication (IPC): Inter process communication (IPC) is a mechanism

whereby two or more processes communicate with each other to perform tasks. These processes may

interact in a client/server manner or in a peer to peer fashion.

Examples: Database servers, E-Mails, IPC is supported is supported by all UNIX systems. However,

different UNIX systems implement different methods for IPC. i.e BSD UNIX-Sockets, Unix System

V.5 for Pipes, FIFOs, messages, semaphores and shared memory.

In computer science, inter-process communication or interprocess communication (IPC) refers

specifically to the mechanisms an operating system provides to allow processes it manages to share

data. Typically, applications can use IPC categorized as clients and servers, where the client requests

data and the server responds to client requests. Many applications are both clients and servers, as

commonly seen in distributed computing. Methods for achieving IPC are divided into categories

 which vary based on software requirements, such

as performance and modularity requirements, and system circumstances, such as network bandwidth

and latency.

Examples: These processes are not bound to one computer, and can run on various computers

connected by network. Inter-process communication techniques can be divided into various types.

These are:

1. Pipes

2. FIFO

3. Shared memory

4. Mapped memory

5. Message queues

6. Sockets

Pipes: The most basic versions of the UNIX operating system gave birth to pipes. These were used

to facilitate one-directional communication between single-system processes. We can create a pipe

by using the pipe system call, thus creating a pair of file descriptors

FIFO: A FIFO or ‘first in, first out’ is a one-way flow of data. FIFOs are similar to pipes, the only

difference being that FIFOs are identified in the file system with a name. In simple terms, FIFOs are

‘named pipes’.

Shared memory: Shared memory is an efficient means of passing data between programs. An area

is created in memory by a process, which is accessible by another process. Therefore, processes

communicate by reading and writing to that memory space.

Mapped memory: This method can be used to share memory or files between different processors

in a Windows environment. A 32-bit API can be used with Windows. This mechanism speeds up

file access, and also facilitates inter-process communication.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Client-server_model
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Software_requirements
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Bandwidth_(computing)
https://en.wikipedia.org/wiki/Bandwidth_(computing)
https://en.wikipedia.org/wiki/Bandwidth_(computing)
https://en.wikipedia.org/wiki/Latency_(engineering)

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 2

user process

Kernel

Kernel

Kernel

user process

user process

user process

Message queues: By using this method, a developer can pass messages between messages via a

single queue or a number of message queues. A system kernel manages this mechanism. An

application program interface (API) coordinates the messages.

Sockets: We use this mechanism to communicate over a network, between a client and a server.

This method facilitates a standard connection that is independent of the type of computer and the

type of operating system used.

IPC between processes on a single computer system:

Communication is everywhere from intraprocess to Interprocess. Interprocess communication has

2 forms:

IPC on one host
IPC on different hosts:

Network Programming

IPC between processes on different systems pipes-creation:

Pipes:

A pipe is a technique for passing information from one program process to another.

A simple, unnamed pipe provides a one-way flow of data(Half Duplex)

Pipe sets up communication channel between two (related) processes.

An unnamed pipe is created by calling pipe(), which returns an array of 2 file descriptors (int).

An unnamed pipe does not associate with any physical file.

It can only be shared by related processes (descendants of a process that creates the unnamed

pipe).

Features of Pipes:

Fig: Two processes connected by a pipe

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 3

On many systems, pipes are limited to 10 logical blocks, each block has 512 bytes.

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 4

As a general rule, one process will write to the pipe (as if it were a file), while another process

will read from the pipe.

Data is written to one end of the pipe and read from the other end.

A pipe exists until both file descriptors are closed in all processes

Piping between Two Processes

The pipe is represented in an array of 2 file descriptors (int)

A pipe provides a one-way flow of data. A pipe can be created by using pipe()

#include<pipe.h>

int pipe (int * filedes);

int pipefd[2]; /* pipefd[0] is opened for reading; pipefd[1] is opened for writing */

Example to show how to create and use a pipe:

#include<stdio.h>

#include<pipe.h>
#include<error.h>

main()

{ int pipefd[2],

n; char

buff[100

];

if (pipe(pipefd) < 0) err_sys(“pipe error”);

printf(“read fd = %d, write fd = %d\n”, pipefd[0], pipefd[1]);

if (write(pipefd[1], “hello world\n”, 12) != 12) err_sys(“write error”);

if ((n=read(pipefd[0], buff, sizeof(buff))) < =0) err_sys(“read

error”); write(1, buff, n); /*fd=1=stdout*/

}

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 5

result:

hello world

read fd=3, write df =4

user process

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(void)

{

int pfds[2];

pipe(pfds);

if (!fork()) {

close(1); /* close normal stdout */

dup(pfds[1]); /* make stdout same as pfds[1] */

close(pfds[0]); /* we don't need this */

execlp("ls", "ls", NULL);

} else {

close(0); /* close normal stdin */

dup(pfds[0]); /* make stdin same as pfds[0] */

close(pfds[1]); /* we don't need this */

execlp("wc", "wc", "-l", NULL);

}

return 0;

}

read fd write fd

kernel

pipe

-->flow of data -->

Pipe in a single process

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 6

parent process fork child process

Pipe in a single process, immediately after fork

Pipes between two processes: unidirectional

parent process fork child process

Steps : 1) opening a pipe

2) forking off another process

3) closing the oppropriate pipes on each end

kernel

pipe

-->flow of data -->

read fd

write fd

read fd

write fd

kernel

pipe

-->flow of data -->

1 pipe between two process: one-way

read fd

write fd

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 7

Pipes between two processes: bidirectional

parent process fork child process

2 p i p e s t o p r o v i d e a b i d i r e c t i o n a l f l o w o f d a t a

Steps: 1) create pipe1 + pipe2 : int pipe1[2], pipe2[2] ----- must be the first step

2) forking off a child process, executing another program as a server

3) parent closes read end of pipe 1 + write end of pipe 2,

4) child closes write end of pipe 1 + read end of pipe 2

Properties of Pipe:

1) Pipes do not have a name. For this reason, the processes must share a parent process. This is

the main drawback to pipes. However, pipes are treated as file descriptors, so the pipes remain

open even after fork and exec.

2) Pipes do not distinguish between messages; they just read a fixed number of bytes. Newline

(\n) can be used to separate messages. A structure with a length field can be used for message

containing binary data.

3) Pipes can also be used to get the output of a command or to provide input to a command

kernel

pipe 2

<---flow of data <--

pipe 1

-->flow of data -->

read fd1

write fd2

read fd2

write fd 1

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 8

popen and pclose library functions:

FILE *popen(const char *command, const char *type);

int pclose(FILE *stream);

When type is “r”:

Calling process reads from

When type is “w”:

Calling process writes to

For example:

#include <stdio.h> #define MAXLINE 1024 main()

{ int n;
char line[MAXLINE]; FILE *fp;

fp=popen(“cat .cshrc”, “r”);

read the lines in .cshrc from fp\

while ((fgets(line, MAXLINE, fp)) != NULL) { n=strlen(line);

if (write(1, line, n)!=n) printf(“print data error”); pclose(fp);

}

IPC between related processes using named pipes: FIFOs-creation:

FIFOs(Named Pipes)

A FIFO ("First In, First Out", pronounced "Fy-Foh") is sometimes known as a named pipe. That

is, it's like apipe, except that it has a name! In this case, the name is that of a file that multiple

processes can open()and read and write to.

This latter aspect of FIFOs is designed to let them get around one of the shortcomings of normal

pipes: you can't grab one end of a normal pipe that was created by an unrelated process. See, if I

run two individual copies of a program, they can both call pipe() all they want and still not be able

to speak to one another. (This is because you must pipe(), then fork() to get a child process that

can communicate to the parent via the pipe.) With FIFOs, though, each unrelated process can

simply open() the pipe and transfer data through it.

A New FIFO is Born

pipe

pipe

http://beej.us/guide/bgipc/output/html/multipage/pipes.html

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 9

Since the FIFO is actually a file on disk, you have to do some fancy-schmancy stuff to create it.

It's not that hard. You just have to call mknod() with the proper arguments. Here is a

mknod() call that creates a FIFO:

In the above example, the FIFO file will be called "myfifo". The second argument is the creation

mode, which is used to tell mknod() to make a FIFO (the S_IFIFO part of the OR) and sets access

permissions to that file (octal 644, or rw-r--r--) which can also be set by ORing together macros

from sys/stat.h. This permission is just like the one you'd set using the chmod command. Finally,

a device number is passed. This is ignored when creating a FIFO, so you can put anything you

want in there.

(An aside: a FIFO can also be created from the command line using the Unix mknod command.)

Producers and Consumers

Once the FIFO has been created, a process can start up and open it for reading or writing using the

standard open() system call.

Since the process is easier to understand once you get some code in your belly, I'll present here

two programs which will send data through a FIFO. One is speak.c which sends data through the

FIFO, and the other is called tick.c, as it sucks data out of the FIFO.

Here is speak.c:

mknod("myfifo", S_IFIFO | 0644 , 0);

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#define FIFO_NAME "american_maid"

int main(void)

{

char s[300];

int num, fd;

http://beej.us/guide/bgipc/examples/speak.c

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 10

What speak does is create the FIFO, then try to open() it. Now, what will happen is that the

open() call will block until some other process opens the other end of the pipe for reading. (There

is a way around this—see O_NDELAY, below.) That process is tick.c, shown here:

mknod(FIFO_NAME, S_IFIFO | 0666, 0);

printf("waiting for readers...\n");

fd = open(FIFO_NAME, O_WRONLY);

printf("got a reader--type some stuff\n");

while (gets(s), !feof(stdin)) {

if ((num = write(fd, s, strlen(s))) == -1)

perror("write");

else

printf("speak: wrote %d bytes\n", num);

}

return 0;

}

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#define FIFO_NAME "american_maid"

int main(void)

{

char s[300];

int num, fd;

mknod(FIFO_NAME, S_IFIFO | 0666, 0);

http://beej.us/guide/bgipc/output/html/multipage/fifos.html#fifondelay
http://beej.us/guide/bgipc/examples/tick.c

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 11

Like speak.c, tick will block on the open() if there is no one writing to the FIFO. As soon as

someone opens the FIFO for writing,tick will spring to life.

Try it! Start speak and it will block until you start tick in another window. (Conversely, if you

start tick, it will block until you startspeak in another window.) Type away in the speak window

and tick will suck it all up.

Now, break out of speak. Notice what happens: the read() in tick returns 0, signifying EOF. In

this way, the reader can tell when all writers have closed their connection to the FIFO. "What?"

you ask "There can be multiple writers to the same pipe?" Sure! That can be very useful, you know.

Perhaps I'll show you later in the document how this can be exploited.

But for now, lets finish this topic by seeing what happens when you break out of

tick while speak is running. "Broken Pipe"! What does this mean? Well, what has happened is

that when all readers for a FIFO close and the writer is still open, the writer will receiver the signal

SIGPIPE the next time it tries to write(). The default signal handler for this signal prints "Broken

Pipe" and exits. Of course, you can handle this more gracefully by catching SIGPIPE through the

signal() call.

Finally, what happens if you have multiple readers? Well, strange things happen. Sometimes one

of the readers get everything. Sometimes it alternates between readers. Why do you want to have

multiple readers, anyway?

O_NDELAY! I'm UNSTOPPABLE!

printf("waiting for writers...\n");

fd = open(FIFO_NAME, O_RDONLY);

printf("got a writer\n");

do {

if ((num = read(fd, s, 300)) == -1)

perror("read");

else {

s[num] = '\0';

printf("tick: read %d bytes: \"%s\"\n", num, s);

}

} while (num > 0);

return 0;

}

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 12

Earlier, I mentioned that you could get around the blocking open() call if there was no

corresponding reader or writer. The way to do this is to call open() with the O_NDELAY flag set

in the mode argument:

This will cause open() to return -1 if there are no processes that have the file open for reading.

Likewise, you can open the reader process using the O_NDELAY flag, but this has a different

effect: all attempts to read() from the pipe will simply return 0 bytes read if there is no data in the

pipe. (That is, the read() will no longer block until there is some data in the pipe.) Note that you

can no longer tell if read() is returning 0 because there is no data in the pipe, or because the writer

has exited. This is the price of power, but my suggestion is to try to stick with blocking whenever

possible.

Differences between unnamed and named pipes:

Pipes and FIFOs

A pipe is a mechanism for interprocess communication; data written to the pipe by

one process can be read by another process. The data is handled in a first-in, first-out

(FIFO) order. The pipe has no name; it is created for one use and both ends must be

inherited from the single process which created the pipe.

A FIFO special file is similar to a pipe, but instead of being an anonymous, temporary

connection, a FIFO has a name or names like any other file. Processes open the FIFO

by name in order to communicate through it.

A pipe or FIFO has to be open at both ends simultaneously. If you read from a pipe or

FIFO file that doesn’t have any processes writing to it (perhaps because they have all

closed the file, or exited), the read returns end-of-file. Writing to a pipe or FIFO that

doesn’t have a reading process is treated as an error condition; it generates

a SIGPIPE signal, and fails with error code EPIPE if the signal is handled or blocked.

Neither pipes nor FIFO special files allow file positioning. Both reading and writing

operations happen sequentially; reading from the beginning of the file and writing at

the end.

fd = open(FIFO_NAME, O_RDONLY | O_NDELAY);

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 13

System V IPC Mechanisms

Linux supports three types of interprocess communication mechanisms that first appeared in

Unix TM System V (1983). These are message queues, semaphores and shared memory. These

System V IPC mechanisms all share common authentication methods. Processes may access these

resources only by passing a unique reference identifier to the kernel via system calls. Access to

these System V IPC objects is checked using access permissions, much like accesses to files are

checked. The access rights to the System V IPC object is set by the creator of the object via system

calls. The object's reference identifier is used by each mechanism as an index into a table of

resources. It i s not a straight forward index but requires some manipulation to generate the index.

All Linux data structures representing System V IPC objects in the system include an ipc_perm

structure which contains the owner and creator process's user and group identifiers. The access

mode for this object (owner, group and other) and the IPC object's key. The key is used as a way

of locating the System V IPC object's reference identifier. Two sets of keys are supported: public

and private. If the key is public then any process in the system, subject to rights checking, can

find the reference identifier for the System V IPC object. System V IPC objects can never be

referenced with a key, only by their reference identifier.

Message Queues

IPC:Message Queues:<sys/msg.h>

The basic idea of a message queue is a simple one.

Two (or more) processes can exchange information via access to a common system

message queue. The sending process places via some (OS) message-passing module a

message onto a queue which can be read by another process (Figure). Each message is

given an identification or type so that processes can select the appropriate message.

Process must share a common key in order to gain access to the queue in the first place

(subject to other permissions -- see below).

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 14

Fig. Basic Message Passing IPC messaging lets processes send and receive messages,

and queue messages for processing in an arbitrary order. Unlike the file byte-stream

data flow of pipes, each IPC message has an explicit length. Messages can be assigned a

specific type. Because of this, a server process can direct message traffic between clients on its

queue by using the client process PID as the message type. For single-message transactions,

multiple server processes can work in parallel on transactions sent to a shared message queue.

Before a process can send or receive a message, the queue must be initialized (through the

msgget function see below) Operations to send and receive messages are performed by the

msgsnd() and msgrcv() functions, respectively.

When a message is sent, its text is copied to the message queue. The

msgsnd() and msgrcv() functions can be performed as either blocking or non-blocking operations.

Non-blocking operations allow for asynchronous message transfer -- the process is not suspended

as a result of sending or receiving a message. In blocking or synchronous message passing the

sending process cannot continue until the message has been transferred or has even been

acknowledged by a receiver. IPC signal and other mechanisms can be employed to implement

such transfer. A blocked message operation remains suspended until one of the following three

conditions occurs:

 The call succeeds.

 The process receives a signal.

 The queue is removed.

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 15

Kernel support for messages:

Message queues allow one or more processes to write messages, which will be read by one or more

reading processes. Linux maintains a list of message queues, the msgque vector; each element of

which points to a msqid_ds data structure that fully describes the message queue. When message

queues are created a new msqid_ds data structure is allocated from system memory and inserted

into the vector.

Figure: System V IPC Message Queues

Each msqid_ds data structure contains an ipc_perm data structure and pointers to the messages

entered onto this queue. In addition, Linux keeps queue modification times such as the last time

that this queue was written to and so on. The msqid_ds also contains two wait queues; one for

the writers to the queue and one for the readers of the message queue.

Each time a process attempts to write a message to the write queue its effective user and group

identifiers are compared with the mode in this queue's ipc_perm data structure. If the process can

write to the queue then the message may be copied from the process's address space into a msg

data structure and put at the end of this message queue. Each message is tagged with an

application specific type, agreed between the cooperating processes. However, there may be no

room for the message as Linux restricts the number and length of messages that can be written.

In this case the process will be added to this message queue's write wait queue and the scheduler

will be called to select a new process to run. It will be woken up when one or more messages

have been read from this message queue.

Reading from the queue is a similar process. Again, the processes access rights to the write

queue are checked. A reading process may choose to either get the first message in the queue

regardless of its type or select messages with particular types. If no messages match this criteria

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 16

the reading process will be added to the message queue's read wait queue and the scheduler run.

When a new message is written to the queue this process will be woken up and run again.

APIs for messages:

Initializing the Message Queue

The msgget() function initializes a new message queue:

int msgget(key_t key, int msgflg)

It can also return the message queue ID (msqid) of the queue corresponding to the key argument.

The value passed as the msgflgargument must be an octal integer with settings for the queue's

permissions and control flags.

The following code illustrates the msgget() function.

#include <sys/ipc.h>;

#include <sys/msg.h>;

...

key_t key; /* key to be passed to msgget() */

int msgflg /* msgflg to be passed to msgget() */

int msqid; /* return value from msgget() */

...

key = ...

msgflg = ...

if ((msqid = msgget(key, msgflg)) == –1)

{

perror("msgget: msgget failed");

exit(1);

} else

(void) fprintf(stderr, “msgget succeeded");

...

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 17

IPC Functions, Key Arguments, and Creation Flags: <sys/ipc.h>

Processes requesting access to an IPC facility must be able to identify it. To do this, functions that

initialize or provide access to an IPC facility use a key_t key argument. (key_t is essentially an int

type defined in <sys/types.h>

The key is an arbitrary value or one that can be derived from a common seed at run time. One way

is with ftok() , which converts a filename to a key value that is unique within the system. Functions

that initialize or get access to messages (also semaphores or shared memory see later) return an ID

number of type int. IPC functions that perform read, write, and control operations use this ID. If

the key argument is specified as IPC_PRIVATE, the call initializes a new instance of an IPC

facility that is private to the creating process. When the IPC_CREAT flag is supplied in the flags

argument appropriate to the call, the function tries to create the facility if it does not exist already.

When called with both the IPC_CREAT and IPC_EXCL flags, the function fails if the facility

already exists. This can be useful when more than one process might attempt to initialize the

facility. One such case might involve several server processes having access to the same facility.

If they all attempt to create the facility with IPC_EXCL in effect, only the first attempt succeeds.

If neither of these flags is given and the facility already exists, the functions to get access simply

return the ID of the facility. If IPC_CREAT is omitted and the facility is not already initialized,

the calls fail. These control flags are combined, using logical (bitwise) OR, with the octal

permission modes to form the flags argument. For example, the statement below initializes a new

message queue if the queue does not exist.

msqid = msgget(ftok("/tmp",

key), (IPC_CREAT | IPC_EXCL | 0400));

The first argument evaluates to a key based on the string ("/tmp"). The second argument evaluates

to the combined permissions and control flags.

Controlling message queues

The msgctl() function alters the permissions and other characteristics of a message queue. The

owner or creator of a queue can change its ownership or permissions using msgctl() Also, any

process with permission to do so can use msgctl() for control operations.

The msgctl() function is prototypes as follows:

int msgctl(int msqid, int cmd, struct msqid_ds *buf)

The msqid argument must be the ID of an existing message queue. The cmd argument is one of:

IPC_STAT

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 18

-- Place information about the status of the queue in the data structure pointed to by buf.

The process must have read permission for this call to succeed.

IPC_SET

-- Set the owner's user and group ID, the permissions, and the size (in number of bytes) of

the message queue. A process must have the effective user ID of the owner, creator, or

superuser for this call to succeed.

IPC_RMID

-- Remove the message queue specified by the msqid argument.

The following code illustrates the msgctl() function with all its various flags:

#include<sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

...

if (msgctl(msqid, IPC_STAT, &buf) == -1) {

perror("msgctl: msgctl failed");

exit(1);

}

...

if (msgctl(msqid, IPC_SET, &buf) == -1) {

perror("msgctl: msgctl failed");

exit(1);

}

...

Sending and Receiving Messages

The msgsnd() and msgrcv() functions send and receive messages, respectively:

int msgsnd(int msqid, const void *msgp, size_t msgsz,

int msgflg);

int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,

int msgflg);

The msqid argument must be the ID of an existing message queue. The msgp argument is a pointer

to a structure that contains the type of the message and its text. The structure below is an example

of what this user-defined buffer might look like:

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 19

struct mymsg {

long mtype; /* message type */

char mtext[MSGSZ]; /* message text of length MSGSZ */

}

The msgsz argument specifies the length of the message in bytes.

The structure member msgtype is the received message's type as specified by the sending

process.

The argument msgflg specifies the action to be taken if one or more of the following are true:

 The number of bytes already on the queue is equal to msg_qbytes.
 The total number of messages on all queues system-wide is equal to the
system-imposed limit.

These actions are as follows:

 If (msgflg & IPC_NOWAIT) is non-zero, the message will not be sent and
the calling process will return immediately.
 If (msgflg & IPC_NOWAIT) is 0, the calling process will suspend execution
until one of the following occurs:

o The condition responsible for the suspension no longer exists, in
which case the message is sent.
o The message queue identifier msqid is removed from the system;
when this occurs, errno is set equal to EIDRM and -1 is returned.
o The calling process receives a signal that is to be caught; in this
case the message is not sent and the calling process resumes execution.

Upon successful completion, the following actions are taken with respect to the

data structure associated with msqid:

o msg_qnum is incremented by 1.

o msg_lspid is set equal to the process ID of the calling process.
o msg_stime is set equal to the current time.

The following code illustrates msgsnd() and msgrcv():

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 20

...

int msgflg; /* message flags for the operation */

struct msgbuf *msgp; /* pointer to the message buffer */

int msgsz; /* message size */

long msgtyp; /* desired message type */

int msqid /* message queue ID to be used */

...

msgp = (struct msgbuf *)malloc((unsigned)(sizeof(struct msgbuf)

- sizeof msgp->mtext + maxmsgsz));

if (msgp == NULL) {

(void) fprintf(stderr, "msgop: %s %d byte messages.\n",

"could not allocate message buffer for", maxmsgsz);

exit(1);

...

msgsz = ...

msgflg = ...

if (msgsnd(msqid, msgp, msgsz, msgflg) == -1)

perror("msgop: msgsnd failed");

...

msgsz = ...

msgtyp = first_on_queue;

msgflg = ...

if (rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg) == -1)

perror("msgop: msgrcv failed");

Client/server example:

#include<string.h>#include<time.h>

#include<sys/ipc.h>#include<sys/msg.h>

#include<sys/wait.h>#include<sys/errno.h>

extern int errno; // error NO.

#define MSGPERM 0600 // msg queue permission

#define MSGTXTLEN 128 // msg text length

int msgqid, rc;

int done;

struct msg_buf {

long mtype;

char mtext[MSGTXTLEN];

} msg;

int main(int argc,char **argv)

{

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 21

// create a message queue. If here you get a invalid msgid and use it in msgsnd() or msgrcg(), an

Invalid Argument error will be returned.

msgqid = msgget(IPC_PRIVATE, MSGPERM|IPC_CREAT|IPC_EXCL);

if (msgqid < 0) { perror(strerror(errno));

printf("failed to create message queue with msgqid = %d\n", msgqid);

return 1; } printf("message queue %d created\n",msgqid);

// message to send

msg.mtype = 1; // set the type of message

sprintf (msg.mtext, "%s\n", "a text msg..."); /* setting the right time format by means of ctime()

*/

// send the message to queue

rc = msgsnd(msgqid, &msg, sizeof(msg.mtext), 0); // the last param can be: 0, IPC_NOWAIT,

MSG_NOERROR, or IPC_NOWAIT|MSG_NOERROR.

if (rc < 0) { perror(strerror(errno));

printf("msgsnd failed, rc = %d\n", rc);

return 1;

} // read the message from queue

rc = msgrcv(msgqid, &msg, sizeof(msg.mtext), 0, 0);

if (rc < 0) { perror(strerror(errno));

printf("msgrcv failed, rc=%d\n", rc);

return 1; }

printf("received msg: %s\n", msg.mtext);

// remove the queue

rc=msgctl(msgqid,IPC_RMID,NULL);

if (rc < 0) { perror(strerror(errno));

printf("msgctl (return queue) failed, rc=%d\n", rc);

return 1; }

printf("message queue %d is gone\n",msgqid);

return 0;

}

Semaphores:

In its simplest form a semaphore is a location in memory whose value can be tested and set by

more than one process. The test and set operation is, so far as each process is concerned,

uninterruptible or atomic; once started nothing can stop it. The result of the test and set operation

is the addition of the current value of the semaphore and the set value, which can be positive or

negative. Depending on the result of the test and set operation one process may have to sleep

until the semphore's value is changed by another process. Semaphores can be used to implement

critical regions, areas of critical code that only one process at a time should be executing.

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 22

Say you had many cooperating processes reading records from and writing records to a single data

file. You would want that file access to be strictly coordinated. You could use a semaphore with

an initial value of 1 and, around the file operating code, put two semaphore operations, the first to

test and decrement the semaphore's value and the second to test and increment it. The first process

to access the file would try to decrement the semaphore's value and it would succeed, the

semaphore's value now being 0. This process can now go ahead and use the data file but if another

process wishing to use it now tries to decrement the semaphore's value it would fail as the result

would be -1. That process will be suspended until the first process has finished with the data file.

When the first process has finished with the data file it will increment the semaphore's value,

making it 1 again. Now the waiting process can be woken and this time its attempt to increment

the semaphore will succeed.

Kernel support for semaphores:

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 23

Figure: System V IPC Semaphores

System V IPC semaphore objects each describe a semaphore array and Linux uses the semid_ds

data structure to represent this. All of the semid_ds data structures in the system are pointed at by

the semary, a vector of pointers. There are sem_nsems in each semaphore array, each one

described by a semdata structure pointed at by sem_base. All of the processes that are allowed to

manipulate the semaphore array of a System V IPC semaphore object may make system calls

that perform operations on them. The system call can specify many operations and each

operation is described by three inputs; the semaphore index, the operation value and a set of

flags. The semaphore index is an index into the semaphore array and the operation value is a

numerical value that will be added to the current value of the semaphore. First Linux tests

whether or not all of the operations would succeed. An operation will succeed if the operation

value added to the semaphore's current value would be greater than zero or if both the operation

value and the semaphore's current value are zero. If any of the semaphore operations would fail

Linux may suspend the process but only if the operation flags have not requested that the system

call is non-blocking. If the process is to be suspended then Linux must save the state of the

semaphore operations to be performed and put the current process onto a wait queue. It does this

by building a sem_queue data structure on the stack and filling it out. The new sem_queue data

structure is put at the end of this semaphore object's wait queue (using

the sem_pending and sem_pending_last pointers). The current process is put on the wait queue in

the sem_queue data structure (sleeper) and the scheduler called to choose another process to run.

If all of the semaphore operations would have succeeded and the current process does not need to

be suspended, Linux goes ahead and applies the operations to the appropriate members of the

semaphore array. Now Linux must check that any waiting, suspended, processes may now apply

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 24

their semaphore operations. It looks at each member of the operations pending queue

(sem_pending) in turn, testing to see if the semphore operations will succeed this time. If they will

then it removes the sem_queue data structure from the operations pending list and applies the

semaphore operations to the semaphore array. It wakes up the sleeping process making it available

to be restarted the next time the scheduler runs. Linux keeps looking through the pending list from

the start until there is a pass where no semaphore operations can be applied and so no more

processes can be woken.

There is a problem with semaphores, deadlocks. These occur when one process has altered the

semaphores value as it enters a critical region but then fails to leave the critical region because it

crashed or was killed. Linux protects against this by maintaining lists of adjustments to the

semaphore arrays. The idea is that when these adjustments are applied, the semaphores will be put

back to the state that they were in before the a process's set of semaphore operations were applied.

These adjustments are kept in sem_undo data structures queued both on the semid_ds

data structure and on the task_struct data structure for the processes using these semaphore arrays.

Each individual semaphore operation may request that an adjustment be maintained. Linux will

maintain at most one sem_undo data structure per process for each semaphore array. If the

requesting process does not have one, then one is created when it is needed. The new

sem_undo data structure is queued both onto this process's task_struct data structure and onto the

semaphore array's semid_ds data structure. As operations are applied to the semphores in the

semaphore array the negation of the operation value is added to this semphore's entry in the

adjustment array of this process's sem_undo data structure. So, if the operation value is 2, then -2

is added to the adjustment entry for this semaphore.

When processes are deleted, as they exit Linux works through their set of sem_undo data structures

applying the adjustments to the semaphore arrays. If a semaphore set is deleted, the sem_undo

data structures are left queued on the process's task_struct but the semaphore array identifier is

made invalid. In this case the semaphore clean up code simply discards the sem_undo

data structure.

APIs for semaphores:
The semget function creates a semaphore set or accesses an existing semaphore set.

#include <sys/sem.h>

int semget(key-t key, int nsems, int oflag);

Returns: nonnegative identifier if OK, -1 on error

Arguments:

Key –returns from ftok()

Nsem-number of semaphore sets are created

Oflag – Open flag for accessing is IPC_CREAT|0666

Program:

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/sem.h>

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 25

Int main()

{

Int semid;

Semid=semget(15,2,IPC_CREAT|0644);

If(semid==-1)

{

Printf(“semget error”);

exit(1);

}

else

{

printf(“semaphore set created :”);

Printf(semid=%d”,semid);

exit(1);

}

Return 0;

}

Semop()

Once a semaphore set is opened with semget, operations are performed on one or

more of the semaphores in the set using the semop function.

#include <sys/sem.h>

int semop (int semid, struct sembuf *opsptr, size-t nops) ;

Returns: 0 if OK, -1 on error

Arugments:

Semid: returns from semget()

opsptr points to an array of the following structures:

struct sembuf {

short sem-num; /* semaphore number: 0, 1, ..., nsems-1 */

short sem-op; /* semaphore operation: <0, 0, >O */

short sem-flg; /* operation flags: 0, IPC-NOWAIT, SEM-UNDO */

};

Nops: specifies how many entries are in the array pointed to by opPtr

Program

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/sem.h>

Strct semid_ds sbuf[2]={{0,-1,SEM_UNDO||IPC_NOWAIT},1,0,0}};

Int main()

{

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 26

Int perms=S_IRWSU|S_IRWXG|S_IRWXO;

Int fd=semget(100,2,IPC_CREAT|S_IRWXG|S_IRWXO);

If(fd==-1)

Perrror(“semget”);

Exit(1);

If(semop(fd,sbuf,2==-1)

Perror(“semop”);

Return 0;

}

Semctl()

The semctl function performs various control operations on a semaphore.

#include <sys/sem.h>

int semctl (int semid, int semnum, int cmd, union semun arg) ;

Returns: nonnegative value if OK (see text), -1 on error

Arguments:

Semid –returns from semget()

Semnum –is a semaphore index where the next argument cmd specifies an

operation to be performed.

The possible values of cmd are

IPC_STAT,IPC_SET,IPC_RMID,GETALL,SETALL,GETVAL,SETVAL,GETPI

D,GETNCNT,GETZCNT.

Union semun arg-is a union typed object that may be used to specify r retrieve the

control data of one or more semaphores in the set.

Union semun

{

Int val; //a semaphore value

Struct semid_ds *buf; //control data of a semaphore set

Ushort *array; //an array of semaphore values

};

/* ** semrm.c -- removes a semaphore */

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 27

int main(void)

{

key_t key;

int semid; if ((key = ftok("semdemo.c", 'J')) == -1)

{

perror("ftok");

exit(1);

} /* grab the semaphore set created by seminit.c: */

if ((semid = semget(key, 1, 0)) == -1)

{ perror("semget");

exit(1);

} /* remove it: */

if (semctl(semid, 0, IPC_RMID) == -1)

{

perror("semctl");

exit(1); }

return 0;

}

File locking with semaphores:

There are two of them. The first, semdemo.c, creates the semaphore if necessary, and performs

some pretend file locking on it in a demo very much like that in the File Locking document. The

second program, semrm.c is used to destroy the semaphore (again, ipcrm could be used to

accomplish this.)

The idea is to run run semdemo.c in a few windows and see how all the processes interact. When

you're done, use semrm.c to remove the semaphore. You could also try removing the semaphore

while running semdemo.c just to see what kinds of errors are generated.

Here's semdemo.c, including a function named initsem() that gets around the semaphore race

conditions, Stevens-style:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

http://beej.us/guide/bgipc/output/html/multipage/flocking.html
http://beej.us/guide/bgipc/examples/semdemo.c

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 28

#define MAX_RETRIES 10

union semun {

int val;

struct semid_ds *buf;

ushort *array;

};

/*

** initsem() -- more-than-inspired by W. Richard Stevens' UNIX Network

** Programming 2nd edition, volume 2, lockvsem.c, page 295.

*/

int initsem(key_t key, int nsems) /* key from ftok() */

{

int i;

union semun arg;

struct semid_ds buf;

struct sembuf sb;

int semid;

semid = semget(key, nsems, IPC_CREAT | IPC_EXCL | 0666);

if (semid >= 0) { /* we got it first */

sb.sem_op = 1; sb.sem_flg = 0;

arg.val = 1;

printf("press return\n"); getchar();

for(sb.sem_num = 0; sb.sem_num < nsems; sb.sem_num++) {

/* do a semop() to "free" the semaphores. */

/* this sets the sem_otime field, as needed below. */

if (semop(semid, &sb, 1) == -1) {

int e = errno;

semctl(semid, 0, IPC_RMID); /* clean up */

errno = e;

return -1; /* error, check errno */

}

}

} else if (errno == EEXIST) { /* someone else got it first */

int ready = 0;

semid = semget(key, nsems, 0); /* get the id */

if (semid < 0) return semid; /* error, check errno */

/* wait for other process to initialize the semaphore: */

arg.buf = &buf;

for(i = 0; i < MAX_RETRIES && !ready; i++) {

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 29

semctl(semid, nsems-1, IPC_STAT, arg);

if (arg.buf->sem_otime != 0) {

ready = 1;

} else {

sleep(1);

}

}

if (!ready) {

errno = ETIME;

return -1;

}

} else {

return semid; /* error, check errno */

}

return semid;

}

int main(void)

{

key_t key;

int semid;

struct sembuf sb;

sb.sem_num = 0;

sb.sem_op = -1; /* set to allocate resource */

sb.sem_flg = SEM_UNDO;

if ((key = ftok("semdemo.c", 'J')) == -1) {

perror("ftok");

exit(1);

}

/* grab the semaphore set created by seminit.c: */

if ((semid = initsem(key, 1)) == -1) {

perror("initsem");

exit(1);

}

printf("Press return to lock: ");

getchar();

printf("Trying to lock...\n");

if (semop(semid, &sb, 1) == -1) {

perror("semop");

exit(1);

}

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 30

printf("Locked.\n");

printf("Press return to unlock: ");

getchar();

sb.sem_op = 1; /* free resource */

if (semop(semid, &sb, 1) == -1) {

perror("semop");

exit(1);

}

printf("Unlocked\n");

return 0;

}

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int main(void)

{

key_t key;

int semid;

union semun arg;

if ((key = ftok("semdemo.c", 'J')) == -1) {

perror("ftok");

exit(1);

}

/* grab the semaphore set created by seminit.c: */

if ((semid = semget(key, 1, 0)) == -1) {

perror("semget");

exit(1);

}

/* remove it: */

if (semctl(semid, 0, IPC_RMID, arg) == -1) {

perror("semctl");

exit(1);

}

return 0;

}

LINUX PROGRAMMING UNIT-IV

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 31

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 1

Syllabus

UNIT -V

Shared Memory- Kernel support for shared memory, Unix system V APIs for shared memory,

shared memory example. Sockets – Introduction to Berkeley sockets, IPC over a network, Client-

Server model, Socket address structures (Unix domain and Internet domain), Socket system calls

for connection oriented protocol and connectionless protocol, example – client/server programs

–Single Server –Client connection, Multiple simultaneous clients, Socket options –setsockopt and

fcntl system calls, Comparison of IPC mechanisms

Shared Memory
Shared memory allows one or more processes to communicate via memory that appears in all of

their virtual address spaces. The pages of the virtual memory is referenced by page table entries in

each of the sharing processes' page tables. It does not have to be at the same address in all of the

processes' virtual memory. As with all System V IPC objects, access to shared memory areas is

controlled via keys and access rights checking. Once the memory is being shared, there are no

checks on how the processes are using it. They must rely on other mechanisms, for example System

V semaphores, to synchronize access to the memory.

Figure: System V IPC Shared Memory

Each newly created shared memory area is represented by a shmid_ds data structure. These are

kept in the shm_segs vector.

The shmid_ds data structure decribes how big the area of shared memory is, how many processes

are using it and information about how that shared memory is mapped into their address spaces.

It is the creator of the shared memory that controls the access permissions to that memory and

whether its key is public or private. If it has enough access rights it may also lock the shared

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 2

memory into physical memory.

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 3

Each process that wishes to share the memory must attach to that virtual memory via a system call.

This creates a new vm_area_struct data structure describing the shared memory for this process.

The process can choose where in its virtual address space the shared memory goes or it can let

Linux choose a free area large enough. The new vm_area_struct structure is put into the list

 of vm_area_struct pointed at by the shmid_ds.

The vm_next_shared and vm_prev_shared pointers are used to link them together. The virtual

memory is not actually created during the attach; it happens when the first process attempts to

access it.

The first time that a process accesses one of the pages of the shared virtual memory, a page fault

will occur. When Linux fixes up that page fault it finds the vm_area_struct data structure

describing it. This contains pointers to handler routines for this type of shared virtual memory. The

shared memory page fault handling code looks in the list of page table entries for this

shmid_ds to see if one exists for this page of the shared virtual memory. If it does not exist, it will

allocate a physical page and create a page table entry for it. As well as going into the current

process's page tables, this entry is saved in the shmid_ds. This means that when the next process

that attempts to access this memory gets a page fault, the shared memory fault handling code will

use this newly created physical page for that process too. So, the first process that accesses a page

of the shared memory causes it to be created and thereafter access by the other processes cause

that page to be added into their virtual address spaces.

When processes no longer wish to share the virtual memory, they detach from it. So long as

other processes are still using the memory the detach only affects the current process. Its

vm_area_struct is removed from the shmid_ds data structure and deallocated. The current process's

page tables are updated to invalidate the area of virtual memory that it used to share. When the last

process sharing the memory detaches from it, the pages of the shared memory current in physical

memory are freed, as is the shmid_ds data structure for this shared memory.

Further complications arise when shared virtual memory is not locked into physical memory. In

this case the pages of the shared memory may be swapped out to the system's swap disk during

periods of high memory usage.

Shared Memory Data Structure

/* One shmid data structure for each shared memory segment in the system. */

struct shmid_ds {

struct ipc_perm shm_perm; /* operation perms */

int shm_segsz; /* size of segment (bytes) */

time_t shm_atime; /* last attach time */

time_t shm_dtime; /* last detach time */

time_t shm_ctime; /* last change time */

unsigned short shm_cpid; /* pid of creator */

unsigned short shm_lpid; /* pid of last operator */

short shm_nattch; /* no. of current attaches */

/* the following are private */

unsigned short shm_npages; /* size of segment (pages) */

unsigned long *shm_pages; /* array of ptrs to frames -> SHMMAX */

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 4

struct vm_area_struct *attaches; /* descriptors for attaches */

};

Creating Shared Memory

int shmget(key_t key, size_t size, int shmflg);

key is either a number or the constant IPC_PRIVATE (man ftok)

a shmid is returned

key_t ftok(const char * path, int id) will return a key value for IPC usage

size is the size of the shared memory data

shmflg is a rights mask (0666) OR’d with one of the following:

IPC_CREAT will create or attach

IPC_EXCL creates new or it will error

if it exists

Attaching to Shared Memory

• After obtaining a shmid from shmget(), you need to attach or map the shared memory

segment to your data reference:

void * shmat(int shmid, void * shmaddr, int shmflg)

• shmid is the id returned from shmget()

• shmaddr is the shared memory segment address. Set this to NULL and let the system

handle it.

• shmflg is one of the following (usually 0):

– SHM_RDONLY sets the segment readonly

– SHM_RND sets page boundary access

– SHM_SHARE_MMUset first available aligned
address

Shared Memory Control

struct shmid_ds {

int shm_segsz; /* size of segment in bytes */

 time_t shm_atime; /* time of last shmat command */

 time_t shm_dtime; /* time of last shmdt command */

...

unsigned short int shm_npages; /* size of segment in pages */

msgqnum_t shm_nattach; /* number of current attaches */

... /* pids of creator and last shmop */

};

int shmctl(int shmid, int cmd, struct shmid_ds * buf);

cmd can be one of:

IPC_RMID destroy the memory specified by shmid

IPC_SET set the uid, gid, and mode of the shared mem

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 5

IPC_STAT get the current shmid_ds struct for the queue

SHM_LOCK Lock the shared memory in memory.

SHM_UNLOCK Unlock the shared memory in memory.

Shmat() &shmdt()

#include <sys/ipc.h>

#include <sys/shm.h>
#include<unistd.h>

#include<stdio.h>

int main()
{
Int perms=S_IRWXU|S_IRWXG|S_IRWXO;

int fd=shmget(100,1024,IPC_CREAT|0644);

If(fd==-1)
Perror(“shmget”);

Exit(1);

Char* addr=(char*)shmat(fd,0,0);
If(addr==(charr*)-1

Perror(“shmat);

Exit(1);
Strcpy(addr,”Hello”);

If(shmdt(addr)==-1)

Perror(“shmdt”);
Return 0;

}

What is socket?

A socket acts as an end point in connection between client and a server present in a network.

Sockets can run on either TCP or UDP protocols

Socket is an interface between application and network.

-The application creates a socket

-The socket type dictates the style of communication

End point determined by two things:

– Host address: IP address is Network Layer

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 6

– Port number: is Transport Layer

• Two end-points determine a connection: socket pair

– ex: 206.62.226.35,p21 + 198.69.10.2,p1500

ex: 206.62.226.35,p21 + 198.69.10.2,p1499

Datagram Socket (UDP)

– Collection of messages

– Best effort
– Connectionless: sender or receiver address must be passed along with each

message sent from one process to another

– Unreliable
– High speed

Stream Socket (TCP)

– Stream of bytes

– Reliable

– Connection-oriented: sender and receiver socket addresses are pre established
before messages are passed between them.

– Low efficiency

Client-Server Communication Stream Sockets (TCP): Connection-

oriented

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 7

Connection-oriented Example (Stream Sockets -TCP)

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 8

Socket Address Structure

1. A socket address structure is a special structure that stores the connection details of a

socket.

2. It mainly consists of fields like IP address,port number and protocol family.

3. Different protocol suites use different socket address structures.

4. The different socket address structures are

5. IPv4 socket address structure: struct sockaddr_in

6. IPv46 socket address structure: struct sockaddr_in6

7. Generic socket address structure: struct sockaddr

socket(): creating a socket

socket - create an endpoint for communication

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 9

The socket() function creates an unbound socket in a communications domain, and returns a

file descriptor that can be used in later function calls that operate on sockets.

Syntax:

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

The domain argument specifies the address family used in the communications domain. The

address families supported by the system are implementation-dependent.

The <sys/socket.h> header defines at least the following values for the domain argument:

AF_UNIX File system pathnames.

AF_INET internet address.

The type argument specifies the socket type, which determines the semantics of communication

over the socket. The socket types supported by the system are implementation-dependent.

Possible socket types include:

SOCK_STREAM :Establishes a virtual circuit for communication. Messages are sent

in a sequenced,reliable,

SOCK_DGRAM Provides datagrams, which are connectionless-mode, unreliable

messages of fixed maximum length.

SOCK_SEQPACKET Provides sequenced, reliable, bidirectional, connection-mode

transmission path for records. A record can be sent using one or more output operations and

received using one or more input operations, but a single operation never transfers part of

more than one record. Record boundaries are visible to the receiver via the MSG_EOR flag.

Protocol :Specifies a particular protocol to be used with the socket. Specifying a protocol

of 0 causes socket() to use an unspecified default protocol appropriate for the requested

socket type.

If the protocol argument is non-zero, it must specify a protocol that is supported by the

address family. The protocols supported by the system are implementation-dependent.

RETURN VALUE

Upon successful completion, socket() returns a nonnegative integer, the socket file descriptor.

Otherwise a value of -1 is returned and errno is set to indicate the error.

bind()- binds a name to a socket
The bind() function assigns an address to an unnamed socket. Sockets created with socket()
function are initially unnamed; they are identified only by their address family.

Syntax:

#include<sys/types.h>

#include <sys/socket.h>

int bind(int socketid, const struct sockaddr *address, socklen_t address_len);

The function takes the following arguments:

socketid :Specifies the socket descriptor of the socket to be bound.

address: Points to a sockaddr structure containing the address to be assigned to the socket.

The length and format of the address depend on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address

argument.

http://pubs.opengroup.org/onlinepubs/7908799/xns/syssocket.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xns/syssocket.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xns/syssocket.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xns/syssocket.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xns/syssocket.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xns/socket.html
http://pubs.opengroup.org/onlinepubs/7908799/xns/syssocket.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xns/syssocket.h.html

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 10

Upon successful completion, bind() returns 0. Otherwise, -1 is returned and errno is set to

indicate the error

listen() listen for socket connections and limit the queue of

incoming connections .
Syntax:
#include<sys/types.h>

#include <sys/socket.h>

int listen(int socketid, int backlog);

The listen() function marks a connection-mode socket, specified by the socket argument, as

accepting connections, and limits the number of outstanding connections in the socket's listen

queue to the value specified by the backlog argument.

The socketid argument is a socket descriptor , as returned by a socket sunction call.

The backlog argument specifies the maximum number of connection requests may be queued

for the socket.

In most UNIX systems , the maximum allowed value for yhe backlog argument is 5

Upon successful completions, listen() returns 0. Otherwise, -1 is returned and errno is set to

indicate the error.

accept() - accept a new connection on a socket
A server accepts a connection request from a client socket.
This is called in a server process to establish a connection based socket connection with a

client socket(which calls connect to request connection establishment

Syntax

#include<sys/types.h>

#include <sys/socket.h>

int accept (int socketid, struct sockaddr *address, socklen_t *address_len);

• The accept() function extracts the first connection on the queue of pending connections,

creates a new socket with the same socket type protocol and address family as the

specified socket, and allocates a new file descriptor for that socket.

• The socketid argument is a socket descriptor , as returned by a socket function call.
• The address argument is a pointer to the address of a socketaddr typed object that holds

the name of a client socket where the server socket is connected.

• The address_len argument is initially set to the maximum size of the object pointed to by
the address argument.

Connect()-connect a socket
• The connect() function requests a connection to be made on a socket.

• A client socket sends a connection request to a server socket.
• Syntax:

#include<sys/types.h>

#include <sys/socket.h>

int connect(int socketid, const struct sockaddr *address, socklen_t address_len);

• socketid Specifies the file descriptor associated with the socket.
• address Points to a sockaddr structure that holds the name of the server socket to be

connected.

http://pubs.opengroup.org/onlinepubs/7908799/xns/syssocket.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xns/syssocket.h.html

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 11

• address_len Specifies the length of the sockaddr structure pointed to by the address

argument.

send(), sendto() - send a message on a socket
The send() function initiates transmission of a message from the specified socket to its peer.

The send() function sends a message only when the socket is connected.

Syntax:

#include<sys/types.h>

#include <sys/socket.h>

int send(int socketid, const void *buffer, size_t length, int flags);

This function sends a message, contained in buffer of size length bytes, to a socket that is

connected to the socket, as designated by socketid

sendto() - send a message on a socket
The sendto() function sends a message through a connection-mode or connectionless-mode

socket. If the socket is connectionless-mode, the message will be sent to the address specified

by dest_addr. If the socket is connection-mode, dest_addr is ignored.

Syntax

#include<sys/types.h>

#include <sys/socket.h>

ssize_t sendto(int socketid, const void *buffer, size_t length, int flags, const struct sockaddr

*dest_addr, socklen_t dest_len);

This function is same as the send API , except that the calling process also specifies the

address of the reciepent socket name via dest_addr and dest_len.

recv() - receive a message from a connected socket
Syntax:
#include<sys/types.h>

#include <sys/socket.h>

ssize_t recv(int socketid, void *buffer, size_t length, int flags);
The recv() function receives a message from a connection-mode or connectionless-mode

socket. It is normally used with connected sockets because it does not permit the application

to retrieve the source address of received data.

The recv() function takes the following arguments:

socketid Specifies the socket file descriptor.

buffer Points to a buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by the buffer argument.

flags Specifies the type of message reception.

Values of flags argument are formed by logically OR'ing zero or more of the following

values:

MSG_PEEK Peeks at an incoming message. The data is treated as unread and the next recv()

or similar function will still return this data. MSG_OOB Requests out-of-band data. The

significance and semantics of out-of-band data are protocol-specific.

MSG_WAITALL Requests that the function block until the full amount of data requested

can be returned. The function may return a smaller amount of data if a signal is caught, if the

connection is terminated, if MSG_PEEK was specified, or if an error is pending for the

socket

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 12

recvfrom() - receive a message from a socket
Syntax

#include<sys/types.h>

#include <sys/socket.h>

ssize_t recvfrom(int socketid, void *buffer, size_t length, int flags, struct sockaddr *address,

socklen_t *address_len);

The recvfrom() function receives a message from a connection-mode or connectionless-mode

socket. It is normally used with connectionless-mode sockets because it permits the

application to retrieve the source address of received data.

This function is same as the recv API , except that the calling process also specifies the

address of the sender socket name via address and address_len.

The function takes the following arguments:

Socketid Specifies the socket file descriptor.

Buffer Points to the buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by the buffer argument.

flags Specifies the type of message reception. Values of this argument are formed by

logically OR'ing zero or more of the following values:

MSG_PEEK: Peeks at an incoming message. The data is treated as unread and the next

recvfrom() or similar function will still return this data.

MSG_OOB :Requests out-of-band data. The significance and semantics of out-of-band data

are protocol-specific.

MSG_WAITALL: Requests that the function block until the full amount of data requested

can be returned. The function may return a smaller amount of data if a signal is caught, if the

connection is terminated, if MSG_PEEK was specified, or if an error is pending for the socke

Shutdown ()
• This function closes the connection between a server and client socket.

Syntax:

#include<sys/types.h>

#include <sys/socket.h>

int shutdown(int sid,int mode);

The sid argument is a socket descriptor, as returned from a socket function call. This is the

socket where the shutdown should occur.

The mode argument specifies the type of shutdown desired . Its possible values and meanings

are:

Mode Meaning

0 Closes the socket for reading. All further reading will return zero bytes(EOF)

1 Closes the socket for writing. Further attempts to send data to the socket will

retun a -1 failure code.

2 Closes the socket for reading and writing. Further attempts to send data the data to the

socket will return a -1 failure code, and any attempt to read data from the socket will

receive a zero value(EOF)

Client/server programs: Connection oriented sockets:

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 13

In the following example of the server program, the number of incoming connections that the

server allows depends on the first parameter that is passed to the server. The default is for the

server to allow only one connection.

/**** iserver.c ****/

#include <stdio.h>

#include <stdlib.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define SERVER_PORT 12345

/* Run with a number of incoming connection as argument */

int main(int argc, char *argv[])

{

int i, len, num, rc;

int listen_sd, accept_sd;

/* Buffer for data */

char buffer[100];

struct sockaddr_in addr;

/* If an argument was specified, use it to */

/* control the number of incoming connections */

if(argc >= 2)

num = atoi(argv[1]);

/* Prompt some message */

else

{

printf("Usage: %s <The_number_of_client_connection else 1 will be used>\n", argv[0]);

num = 1;

}

/* Create an AF_INET stream socket to receive */

/* incoming connections on */

listen_sd = socket(AF_INET, SOCK_STREAM, 0);

if(listen_sd < 0)

{

perror("Iserver - socket() error");

exit(-1);

}

else

printf("Iserver - socket() is OK\n");

printf("Binding the socket...\n");

/* Bind the socket */

memset(&addr, 0, sizeof(addr));

addr.sin_family = AF_INET;

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 14

addr.sin_addr.s_addr = htonl(INADDR_ANY);

addr.sin_port = htons(SERVER_PORT);

rc = bind(listen_sd, (struct sockaddr *)&addr, sizeof(addr));

if(rc < 0)

{

perror("Iserver - bind() error");

close(listen_sd);

exit(-1);

}

else

printf("Iserver - bind() is OK\n");

/* Set the listen backlog */

rc = listen(listen_sd, 5);

if(rc < 0)

{

perror("Iserver - listen() error");

close(listen_sd);

exit(-1);

}

else

printf("Iserver - listen() is OK\n");

/* Inform the user that the server is ready */

printf("The Iserver is ready!\n");

/* Go through the loop once for each connection */

for(i=0; i < num; i++)

{

/* Wait for an incoming connection */

printf("Iteration: #%d\n", i+1);

printf(" waiting on accept()\n");

accept_sd = accept(listen_sd, NULL, NULL);

if(accept_sd < 0)

{

perror("Iserver - accept() error");

close(listen_sd);

exit(-1);

}

else

printf("accept() is OK and completed successfully!\n");

/* Receive a message from the client */

printf("I am waiting client(s) to send message(s) to me...\n");

rc = recv(accept_sd, buffer, sizeof(buffer), 0);

if(rc <= 0)

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 15

{

perror("Iserver - recv() error");

close(listen_sd);

close(accept_sd);

exit(-1);

}

else

printf("The message from client: \"%s\"\n", buffer);

/* Echo the data back to the client */

printf("Echoing it back to client...\n");

len = rc;

rc = send(accept_sd, buffer, len, 0);

if(rc <= 0)

{

perror("Iserver - send() error");

close(listen_sd);

close(accept_sd);

exit(-1);

}

else

printf("Iserver - send() is OK.\n");

/* Close the incoming connection */

close(accept_sd);

}

/* Close the listen socket */

close(listen_sd);

return 0;

}

 Compile and link.

[bodo@bakawali testsocket]$ gcc -g iserver.c -o iserver

 Run the server program.

[bodo@bakawali testsocket]$./iserver

Usage: ./iserver <The_number_of_client_connection else 1 will be used>

Iserver - socket() is OK

Binding the socket...

Iserver - bind() is OK

Iserver - listen() is OK

The Iserver is ready!

Iteration: #1

waiting on accept()

 The server is waiting the connections from clients. The following program example is a

client program.

Example: Connection-oriented common client

 This example provides the code for the client job. The client job does a socket(),

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 16

connect(), send(), recv(), and close().

 The client job is not aware that the data buffer it sent and received is going to a worker

job rather than to the server.

 This client job program can also be used to work with other previous connection-

oriented server program examples.

/****** comclient.c ******/

#include <stdio.h>

#include <stdlib.h>

#include <sys/socket.h>

#include <netinet/in.h>

/* Our server port as in the previous program */

#define SERVER_PORT 12345

main (int argc, char *argv[])

{

int len, rc;

int sockfd;

char send_buf[100];

char recv_buf[100];

struct sockaddr_in addr;

if(argc !=2)

{

printf("Usage: %s <Server_name or Server_IP_address>\n", argv[0]);

exit (-1);

}

/* Create an AF_INET stream socket */

sockfd = socket(AF_INET, SOCK_STREAM, 0);

if(sockfd < 0)

{

perror("client - socket() error");

exit(-1);

}

else

printf("client - socket() is OK.\n");

/* Initialize the socket address structure */

memset(&addr, 0, sizeof(addr));

addr.sin_family = AF_INET;

addr.sin_addr.s_addr = htonl(INADDR_ANY);

addr.sin_port = htons(SERVER_PORT);

/* Connect to the server */

rc = connect(sockfd, (struct sockaddr *)&addr, sizeof(struct sockaddr_in));

if(rc < 0)

{

perror("client - connect() error");

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 17

close(sockfd);

exit(-1);

}

else

{

printf("client - connect() is OK.\n");

printf("connect() completed successfully.\n");

printf("Connection with %s using port %d established!\n", argv[1], SERVER_PORT);

}

/* Enter data buffer that is to be sent */

printf("Enter message to be sent to server:\n");

gets(send_buf);

/* Send data buffer to the worker job */

len = send(sockfd, send_buf, strlen(send_buf) + 1, 0);

if(len != strlen(send_buf) + 1)

{

perror("client - send() error");

close(sockfd);

exit(-1);

}

else

printf("client - send() is OK.\n");

printf("%d bytes sent.\n", len);

/* Receive data buffer from the worker job */

len = recv(sockfd, recv_buf, sizeof(recv_buf), 0);

if(len != strlen(send_buf) + 1)

{

perror("client - recv() error");

close(sockfd);

exit(-1);

}

else

{

printf("client - recv() is OK.\n");

printf("The sent message: \"%s\" successfully received by server and echoed back to client!\n",

recv_buf);

printf("%d bytes received.\n", len);

}

/* Close the socket */

close(sockfd);

return 0;

}

 Compile and link

[bodo@bakawali testsocket]$ gcc -g comclient.c -o comclient

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 18

/tmp/ccG1hQSw.o(.text+0x171): In function `main':

/home/bodo/testsocket/comclient.c:53: warning: the `gets' function is dangerous and should not

be used.

 You may want to change the gets() to the secure version, gets_s(). Run the program and

make sure you run the server program as in the previous program example.

[bodo@bakawali testsocket]$./comclient

Usage: ./comclient <Server_name or Server_IP_address>

[bodo@bakawali testsocket]$./comclient bakawali

client - socket() is OK.

client - connect() is OK.

connect() completed successfully.

Connection with bakawali using port 12345 established!

Enter message to be sent to server:

This is a test message from a stupid client lol!

client - send() is OK.

49 bytes sent.

client - recv() is OK.

The sent message: "This is a test message from a stupid client lol!" successfully received by

server and echoed back to client!

49 bytes received.

[bodo@bakawali testsocket]$

 And the message at the server console.

[bodo@bakawali testsocket]$./iserver

Usage: ./iserver <The_number_of_client_connection else 1 will be used>

Iserver - socket() is OK

Binding the socket...

Iserver - bind() is OK

Iserver - listen() is OK

The Iserver is ready!

Iteration: #1

waiting on accept()

accept() is OK and completed successfully!

I am waiting client(s) to send message(s) to me...

The message from client: "This is a test message from a stupid client lol!"

Echoing it back to client...

Iserver - send() is OK.

[bodo@bakawali testsocket]$

 Let try more than 1 connection. Firstly, run the server.

[bodo@bakawali testsocket]$./iserver 2

Iserver - socket() is OK

Binding the socket...

Iserver - bind() is OK

Iserver - listen() is OK

The Iserver is ready!

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 19

Iteration: #1

waiting on accept()

 Then run the client twice.

[bodo@bakawali testsocket]$./comclient bakawali

client - socket() is OK.

client - connect() is OK.

connect() completed successfully.

Connection with bakawali using port 12345 established!

Enter message to be sent to server:

Test message #1

client - send() is OK.

16 bytes sent.

client - recv() is OK.

The sent message: "Test message #1" successfully received by server and echoed back to client!

16 bytes received.

[bodo@bakawali testsocket]$./comclient bakawali

client - socket() is OK.

client - connect() is OK.

connect() completed successfully.

Connection with bakawali using port 12345 established!

Enter message to be sent to server:

Test message #2

client - send() is OK.

16 bytes sent.

client - recv() is OK.

The sent message: "Test message #2" successfully received by server and echoed back to client!

16 bytes received.

[bodo@bakawali testsocket]$

 The message on the server console.

[bodo@bakawali testsocket]$./iserver 2

Iserver - socket() is OK

Binding the socket...

Iserver - bind() is OK

Iserver - listen() is OK

The Iserver is ready!

Iteration: #1

waiting on accept()

accept() is OK and completed successfully!

I am waiting client(s) to send message(s) to me...

The message from client: "Test message #1"

Echoing it back to client...

Iserver - send() is OK.

Iteration: #2

waiting on accept()

accept() is OK and completed successfully!

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 20

I am waiting client(s) to send message(s) to me...

The message from client: "Test message #2"

Echoing it back to client...

Iserver - send() is OK.

[bodo@bakawali testsocket]$

Client/server programs: Connectionless sockets:

#include <stdio.h>

#include <errno.h>

#include <netinet/in.h>

#define DATA_BUFFER 5000

int main () {

struct sockaddr_in saddr, new_addr;

int fd, ret_val;

char buf[DATA_BUFFER];

socklen_t addrlen;

/* Step1: open a UDP socket */

fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

if (fd == -1) {

fprintf(stderr, "socket failed [%s]\n", strerror(errno));

return -1;

}

printf("Created a socket with fd: %d\n", fd);

/* Initialize the socket address structure */

saddr.sin_family = AF_INET;

saddr.sin_port = htons(7000);

saddr.sin_addr.s_addr = INADDR_ANY;

/* Step2: bind the socket */

ret_val = bind(fd, (struct sockaddr *)&saddr, sizeof(struct sockaddr_in));

if (ret_val != 0) {

fprintf(stderr, "bind failed [%s]\n", strerror(errno));

close(fd);

return -1;

}

/* Step3: Start receiving data. */

printf("Let us wait for a remote client to send some data\n");

ret_val = recvfrom(fd, buf, DATA_BUFFER, 0,

(struct sockaddr *)&new_addr, &addrlen);

if (ret_val != -1) {

printf("Received data (len %d bytes): %s\n", ret_val, buf);

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 21

} else {

printf("recvfrom() failed [%s]\n", strerror(errno));

}

/* Last step: close the socket */

close(fd);

return 0;

}

#include <stdio.h>

#include <errno.h>

#include <string.h>

#include <netinet/in.h>

#include <netdb.h>

#define DATA_BUFFER "Mona Lisa was painted by Leonardo da Vinci"

int main () {

struct sockaddr_in saddr;

int fd, ret_val;

struct hostent *host; /* need netdb.h for this */

/* Step1: open a UDP socket */

fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

if (fd == -1) {

fprintf(stderr, "socket failed [%s]\n", strerror(errno));

return -1;

}

printf("Created a socket with fd: %d\n", fd);

/* Next, initialize the server address */

saddr.sin_family = AF_INET;

saddr.sin_port = htons(7000);

host = gethostbyname("127.0.0.1");

saddr.sin_addr = *((struct in_addr *)host->h_addr);

/* Step2: send some data */

ret_val = sendto(fd,DATA_BUFFER, strlen(DATA_BUFFER) + 1, 0,

(struct sockaddr *)&saddr, sizeof(struct sockaddr_in));

if (ret_val != -1) {

printf("Successfully sent data (len %d bytes): %s\n", ret_val, DATA_BUFFER);

} else {

printf("sendto() failed [%s]\n", strerror(errno));

}

/* Last step: close the socket */

LINUX PROGRAMMING UNIT-V

CMR ENGINEERING COLLEGE DEPARTMENT OF CSE 22

gcc udp-server.c -o udp_server

$

$./udp_server

Created a socket with fd: 3

Let us wait for a remote client to send some data

Received data (len 43 bytes): Mona Lisa was painted by Leonardo da Vinci

$ gcc udp-client.c -o udp_client

$.

$./udp_client

Created a socket with fd: 3

Successfully sent data (len 43 bytes): Mona Lisa was painted by Leonardo da

Vinci

close(fd);

return 0;

	UNIT-I
	History of UNIX:
	History of Linux:
	Comparing Linux and UNIX
	Features of Linux:
	Architecture of UNIX
	SHELL:
	Shell Responsibilities:
	Command or Utility:
	Types of Utilities:

	Listing Files
	Meta Characters
	Hidden Files
	Creating Files
	Editing Files
	Display Content of a File
	Counting Words in a File
	Copying Files:
	Renaming Files
	Deleting Files
	Standard Unix Streams
	iii) Security related utilities: chmod,chown,
	iv) Process Utilities:

	The df Command
	The du Command
	The ping Utility
	Syntax
	Example
	The ftp Utility
	Syntax (1)
	Example (1)
	The telnet Utility
	The finger Utility
	VII) Filtering commands:
	The grep Command

	x) Backup Utilities:
	Stream Editor (Sed)

	Invoking sed
	The sed General Syntax
	Deleting All Lines with sed
	The sed Addresses
	The sed Address Ranges
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	The Substitution Command
	Substitution Flags
	Using an Alternative String Separator
	Replacing with Empty Space
	Address Substitution
	The Matching Command
	Using Regular Expression
	Matching Characters
	Character Class Keywords
	Aampersand Referencing
	Using Multiple sed Commands
	Back References
	Shell Prompt
	Shell Types
	Shell Scripts
	Example Script
	Shell Comments
	Extended Shell Scripts
	Command-Line Arguments
	Special Parameters $* and $@
	Exit Status
	Arithmetic Operators
	Relational Operators:
	Boolean Operators
	String Operators
	File Test Operators
	The if...else statements:
	The case...esac Statement
	Nesting Loops
	Nesting while Loops
	Syntax (2)
	What is Substitution?
	Example (2)
	Command Substitution
	Syntax (3)
	Example (3)
	Variable Substitution
	Example (4)
	The Metacharacters
	Example (5)
	The Single Quotes
	The Double Quotes
	The Back Quotes
	Syntax:
	Example (6)
	Output Redirection
	Input Redirection
	Here Document
	Discard the output
	Redirection Commands
	UNIT II
	Syllabus
	File Concept
	File Types
	Hierarchical File Structure
	File metadata
	Commands to access Inode numbers
	1) ls -i Command
	Kernel Supports for files:

	Introduction to System Calls
	 For file I/0
	 For process control
	 For interprocess communication
	System Calls versus Library Routines
	Using System Calls for File I/O

	open():
	close():
	read():
	write():
	stat():
	fstat():
	perror()

	File permissions –chmod(),fchmod()
	Name
	Synopsis
	Description

	File ownership –chown, lchown, fchown
	Name
	Description
	Return Value

	Links –soft links and hard links –symlink, link, unlink
	Name
	Synopsis
	Description
	Return Value
	Name (1)
	Synopsis (1)
	Description (1)
	Return Value (1)
	Name (2)
	Synopsis (2)
	Description (2)
	Return Value (2)

	Directories –Creating, removing and changing Directories –mkdir, rmdir,chdir,obtaining current working directory –getcwd
	Name
	Synopsis
	Description
	Return Value
	Name (1)
	Description (1)
	Return Value (1)
	Name (2)
	#include <unistd.h>
	Description
	Return Value
	Name

	#include <unistd.h> (1)
	char *get_current_dir_name(void);
	Description
	Return Value

	Directory contents, Scanning Directories- opendir, readdir, closedir, rewinddir functions.
	Name
	Return Value
	Name (1)
	#include <dirent.h>
	Description
	Return Value
	Name
	Synopsis
	Description (1)
	Return Value (1)
	Name (1)
	Synopsis (1)
	Description (2)
	Return Value (2)

	UNIT III
	Figure - Diagram of process state
	Figure - Process control block (PCB)
	SYNOPSIS
	char *getenv(const char *name);
	DESCRIPTION
	RETURN VALUE
	NAME
	SYNOPSIS (1)
	DESCRIPTION (1)
	RETURN VALUE (1)
	Process identification:
	Process creation in UNIX

	waiting for a process
	The versions of exec are:
	exec system call functionality
	execvp
	Things to remember about exec*:
	A few more Examples of valid exec commands:

	Zombie process:
	Differences between threads and processes:
	Abort & sleep functions.
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	Name
	Synopsis
	Description
	Return Value

	UNIT IV
	IPC between processes on a single computer system:
	IPC between processes on different systems pipes-creation:
	Pipes:
	Features of Pipes:
	Piping between Two Processes
	Pipes between two processes: unidirectional
	Pipes between two processes: bidirectional
	Properties of Pipe:

	popen and pclose library functions:
	When type is “r”:
	When type is “w”:
	For example:
	FIFOs(Named Pipes)

	Producers and Consumers
	O_NDELAY! I'm UNSTOPPABLE!

	Differences between unnamed and named pipes:

	System V IPC Mechanisms
	Message Queues
	Kernel support for messages:
	APIs for messages:
	Initializing the Message Queue
	IPC Functions, Key Arguments, and Creation Flags: <sys/ipc.h>
	Controlling message queues
	IPC_STAT
	IPC_SET
	IPC_RMID
	Sending and Receiving Messages

	Semaphores:
	Kernel support for semaphores:
	APIs for semaphores:
	Arugments:
	#include <sys/sem.h>

	File locking with semaphores:
	UNIT -V
	Shared Memory

	Shared Memory Data Structure
	Creating Shared Memory
	Attaching to Shared Memory
	Shared Memory Control
	Shmat() &shmdt()
	What is socket?

	Client-Server Communication Stream Sockets (TCP): Connection- oriented
	Socket Address Structure
	socket(): creating a socket
	bind()- binds a name to a socket
	listen() listen for socket connections and limit the queue of incoming connections .
	accept() - accept a new connection on a socket
	Connect()-connect a socket
	send(), sendto() - send a message on a socket

	sendto() - send a message on a socket
	recv() - receive a message from a connected socket
	recvfrom() - receive a message from a socket
	Shutdown ()
	Client/server programs: Connection oriented sockets:
	Example: Connection-oriented common client

	Client/server programs: Connectionless sockets:

